Carbon fluxes associated with hydroelectric generation in the Porce region of Colombia

Carlos A. Sierra,
Jorge I. Del Valle, Sergio A. Orrego, Flavio H. Moreno

Mexico City, September 4, 2006
Introduction

Medellín, Colombia
Medellín, Colombia

Annual increase of 3.3% ~ 50,000 people/yr
Introduction

Energy sources in Colombia

- Hydroenergy: 76.9%
- Natural gas: 14.5%
- Coal burning: 5.7%
- Others: 2.9%
Medellín and the Porce region of Colombia
Impacts of dams on ecosystems according to the World Commission on Dams (2000)

- Terrestrial ecosystems and biodiversity
- Greenhouse gas emissions (CO₂, CH₄, N₂O)
- Aquatic ecosystems, biodiversity and fisheries
- Downstream floodplains
Location of the Porce region, Colombia
Emission scenarios associated with vegetation management pre-flooding

Logging and removing

Burning

Flooding

CO_2

CO_2 and $1.2\% \text{CH}_4$

CO_2

CH_4
Mitigation

Would restoration of surrounding areas mitigate the impacts of the reservoir in terms of GHG emissions?

How much area would be needed?
Results

Carbon stocks in vegetation

![Box plot showing total carbon stocks in vegetation, comparing primary and secondary systems.](image-url)
Results

Emissions from flooded vegetation

![Graph showing GHG emissions from flooded vegetation over time.](image-url)
Results

Emissions from flooded soil

GHG emissions (Mg C ha⁻¹)

Time (years)

- CH4 bubbles
- CO2 bubbles
- CH4 diffusion
- CO2 diffusion
Total emissions due to flooding in CO$_2$e

GWP$_{\text{CH}_4}$ = 23
Results

Cumulative emissions due to flooding in CO$_2$e

![Graph showing cumulative emissions](image-url)
Cumulative emissions due to flooding, logging, or burning in soils and vegetation

- Flooding
- Logging
- Burning
Results

Cumulative emissions due to flooding, logging, or burning in vegetation

![Graph showing cumulative emissions over time for flooding, logging, and burning.]
Carbon accumulation due to restoration

STANDCARB model
Sequestration versus emissions at different management scenarios at a hectare basis
Additional area required for mitigation in a 100 year horizon

- Flooding: 870 ha
- Logging: 834 ha
- Burning: 808 ha
Conclusions

• Vegetation management can influence the amount of GHG to be emitted in hydroelectric reservoirs

• Our modeling exercise showed that burning of vegetation is the management practice with lower GHG emissions for the studied site

• Logging of vegetation pre-flooding can reduce the amount of GHG emissions but this reduction might not be large enough to compensate extraction costs

• Carbon management vs. environmental management
Conclusions

Methods

Results

Introduction

Conclusions

Fauna

Rescue

Fire vs. Flooding
Acknowledgements

EPM

Contract 3/DJ/1367/17 - Act No. 28

NCAR and GCP

OSU Foundation

Eduardo Ruiz Landa Founders Fellowship