Mexico City Fuel Savings and Emission Reductions by Improving Vehicle Air Conditioning

Larry Chaney
National Renewable Energy Laboratory

Karen Thundiyil
U.S. Environmental Protection Agency

Samudra Vijay
U.S. Environmental Protection Agency

Rodolfo Lacy
Centro Mario Molina

First International Conference on Carbon Management at Urban and Regional Levels: Connecting Development Decisions to Global Issues
September 7, 2006
Situation and Opportunity

• Situation
 – Global motor vehicle market is growing rapidly
 – Most vehicles will be air conditioned
 – Air conditioning could be 30% of total fuel use
 – Refrigerant emissions are greenhouse gases

• Opportunity for government and industry
 – MAC emission reduction partnership
 – Secure International financing to jump-start transformation
 – Select new mobile AC technology, satisfying customer demand for comfort, fuel-efficiency and environmental quality
Predicting Fuel Used for AC

Fuel use increased up to 30%
Even more with hybrid vehicles!

A/C Cooling 3-6 kW_{th}
Predicting Mexico City Fuel Used for AC

- Use Multiple Models/Inputs/Data Sets
 - Environmental Conditions (Temperature, Humidity, W/m² Solar)
 - Thermal Comfort Model
 - Vehicle Simulations (Fuel Economy Reduction with AC)
Environmental Conditions: Mexico City: Temperature

IWEC Data Base
International Weather for Energy Calculations
Temperature, humidity, solar radiation
Mean Radiant Temperature Model

- MRT varies with vehicle type
- Vehicle data used to generate models

Model

\[\text{MRT(car, time)} = 27^\circ \text{C} \times \frac{\text{Radiation(t)}}{1000 \text{W/m}^2} + T_{\text{ambient(t)}} \]

MRT represents average surface temperature

Reference: SAE 2002-01-1957
Mean Radiant Temperature

Mean Radiant Temperature (C) in Mexico City, Mexico

Month

Time of Day

12-6am
6-9am
9am-1pm
1-4pm
4-7pm
7-10pm
10pm-12am

Jan
Feb
Mar
Apr
May
June
July
Aug
Sept
Oct
Nov
Dec

10
15
20
25
30
35
40
45
50
Thermal Comfort Model Inputs & Outputs

Thermal Comfort Model

Energy Balance:
- Internal heat production
- Water vapor diffusion through skin heat loss
- Sweating heat loss
- Respiration latent and dry heat loss
- Convection heat loss
- Radiation heat loss

Inputs
- Air Temperature
- Mean Radiant Temperature
- Humidity Ratio
- Air Velocity
- Activity (met)
- Clothing (clo)

Outputs
- Predicted Mean Vote (PMV)
- Predicted Percent Dissatisfied (PPD)

Source: International Standards Organization (ISO) 7730 “Moderate thermal environments—Determination of the PMV and PPD indices and specification of the conditions for thermal comfort”
Thermal Comfort Model: Percent of People Using AC

Thermal Sensation Vote
- 3 Cold
- 2 Cool
- 1 Slightly Cool
0 Neutral
+ 1 Slightly Warm
+ 2 Warm
+ 3 Hot

PMV
- 3
- 2
- 1
0
+ 1
+ 2
+ 3

PMV from PMV

Mexico City

TMY
T
H
TC
PPD
Time
Month
City A
City X

PPD

VMT w/AC
MPG w/AC
MPG w/o AC
Gal for AC/veh
Reg
Tot Gal /State

VMT
w/AC
MPG
w/AC

Gal for
AC/veh
Reg
Tot Gal
/State

NREL National Renewable Energy Laboratory
AC Usage for Cooling

Predicted Percent Dissatisfied (%) in Mexico City, Mexico
Clothing: 0.6, Velocity: 0.1, MRT: Ambient+Rise

100% of People Have AC On
Vehicle Usage with Time of Day, Month

Mexico City

70% Daily Travel

Hour of the Day

Percentage of Travel Occurring during that Time

Summer Months: May - September

Assumed the same as U.S.
Fuel Economy Impact: Vehicle Simulations

Mexico City

Typical Mexico City Car: Simulated Nissan Tsuru
AC system: 130cc R134a compressor, 120W blower
Drive Cycle

![Graph of Drive Cycle]

CYC_MEXICO_CITY

- **key on**
- **speed**
- **elevation**

Speed/Elevation vs. Time

- **Description**
- **Statistics**

- **time:** 1394 s
- **distance:** 5.5 miles
- **max speed:** 47.16 mph
- **avg speed:** 14.21 mph
- **max accel:** 6.66 ft/s²
- **max decel:** -6.66 ft/s²
- **avg accel:** 1.53 ft/s²
- **avg decel:** -1.32 ft/s²
- **idle time:** 358 s
- **no of stops:** 14
- **max up grade:** 0 %
- **avg up grade:** 0 %
- **max down grade:** 0 %
- **avg down grade:** 0 %

Percentage (%)

- **Speed (mph):**
 - 0%
 - 10%
 - 20%
 - 30%
 - 40%

Elevation (feet):

- 0
- 0.2
- 0.4
- 0.6
- 0.8
- 1
Fuel Economy Impact: Vehicle Simulations

Mexico City

Fuel Economy (km/liter)

<table>
<thead>
<tr>
<th>Drive Cycle</th>
<th>Mexico City</th>
<th>ECE EUDC</th>
<th>FTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Economy no AC</td>
<td>11.55</td>
<td>14.81</td>
<td>14.31</td>
</tr>
<tr>
<td>Fuel Economy with AC</td>
<td>9.09</td>
<td>11.39</td>
<td>11.50</td>
</tr>
<tr>
<td>FE % drop with AC</td>
<td>21.28</td>
<td>23.08</td>
<td>19.66</td>
</tr>
</tbody>
</table>

Hot initial conditions

Typical Mexican Car: Simulated Nissan Tsuru

FTP: U.S. Standard Drive Cycle

NREL National Renewable Energy Laboratory
Vehicle Registrations
Cars, Jeeps, and Taxis

Mexico City

- 3.5% Average Annual Growth
- 2.2 million automobiles in 2000
 World Bank

> Graph showing automobile registrations (millions) from 2004 to 2016 with a linear trend line.

- TMY
- T
- H
- City A
- City B
- PPD
- Time
- Month
- PPD
- VMT w/AC
- MPG w/AC
- MPG w/o AC
- Gal for AC/veh
- Reg
- Tot Gal /State

World Bank
Distance Traveled per Year

Mexico:
• Car: 14,484 km (9,000 miles)

U.S.:
• Car: 19,214 km (11,939 miles)

Sources:
• Centro Mario Molina
• Ward’s Automotive Yearbook, 2005
Fuel Used for AC

Projected AC Fuel Use

- Billion liters
- Registered Vehicles
- Automobile Registrations (millions)

Graph showing projected AC fuel use from 2004 to 2020 with lines for Mexico City Cycle and Registered Vehicles.
Potential Fuel & CO₂ Savings in Mexico City

Baseline and 3 Scenarios:
In 2015, annual fuel savings of 38 to 77 million liters
annual CO₂ savings of 90 to 178 million kg
equal to 19,000 to 39,000 cars off the road!
Assumptions: 20 to 40% of new cars sold with A/C
I-MAC implementation by 2008 or 2010
20% of A/Cs are I-MAC
Per Vehicle Fuel Saved by Reducing AC Consumption

Assuming 30% efficiency improvement, almost 60 liters saved per vehicle.

Equivalent to 15 gal/veh/yr

At $2.30 per US gal

AC system up grade would pay for itself in 1.2 years.

30% improvement is achievable now!

I-MAC program
Conclusions

• Fuel use & CO$_2$ emissions depend on MAC design
• Technology is available to improve MAC fuel efficiency
• Mexico City can save millions of liters of fuel annually
• The cost to vehicle owners is paid back rapidly
• Collaboration is key to success
For More Information

• I-MAC Partnership: Stephen Andersen
 – Ph: +1 202-343-9069
 – Email: andersen.stephen@epa.gov

• NREL Modeling: Larry Chaney
 – Ph: +1 303-275-4420
 – Email: lawrence_chaney@nrel.gov
CO₂ Reduction across the World

Billion kg CO₂: Reduction with 30% Drop in AC Power (2002)
Disclaimer and Government License

This work has been authored by Midwest Research Institute (MRI) under Contract No. DE-AC36-99GO10337 with the U.S. Department of Energy (the “DOE”). The United States Government (the “Government”) retains and the publisher, by accepting the work for publication, acknowledges that the Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for Government purposes.

Neither MRI, the DOE, the Government, nor any other agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe any privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement, recommendation, or favoring by the Government or any agency thereof. The views and opinions of the authors and/or presenters expressed herein do not necessarily state or reflect those of MRI, the DOE, the Government, or any agency thereof.