Terrestrial CO2 Flux Monitoring

CO2 Flux in Forests

Ship-based GHG Monitoring

Ocean

Teshio, Hokkaido Northern foothills of Mt. Fuji
Trans Future 5 (TOYOFUJI SHIPPING Co., Ltd.)

Ground-based GHG Monitoring

Land Surface

Tokyo Sky Tree
Cape Ochiishi, Hokkaido
Top of Mt. Fuji

Monitoring of Global Warming Effects on Marine Environment and Alpine Zone

Mt. Tateyama
Coral reef in Tatsukushi, Kochi

Greenhouse Gases Observing Satellite GOSAT “IBUKI”

Space

GOSAT continues observing CO2 concentrations from space
Launch of Ibuki (January 2009)

Measuring Greenhouse Gases by Commercial Airlines (Contrail Project) and Aircraft Monitoring over Siberia

Sky

Global Environmental Monitoring by CGER, NIES
Center for Global Environmental Research

Monitoring of Global Warming Effects on Marine Environment and Alpine Zone

Mt. Tateyama
Coral reef in Tatsukushi, Kochi

Land Surface

Ground-based GHG Monitoring

Tokyo Sky Tree
Cape Ochiishi, Hokkaido
Top of Mt. Fuji

Ocean

Ship-based GHG Monitoring

Global Environmental Monitoring by CGER, NIES
Center for Global Environmental Research

Monitoring of Global Warming Effects on Marine Environment and Alpine Zone

Mt. Tateyama
Coral reef in Tatsukushi, Kochi

Land Surface

Ground-based GHG Monitoring

Tokyo Sky Tree
Cape Ochiishi, Hokkaido
Top of Mt. Fuji

Ocean

Ship-based GHG Monitoring

National Institute for Environmental Studies, Japan
Center for Global Environmental Research
Address: 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, JAPAN
Website: http://www.cger.nies.go.jp
Facebook: https://www.facebook.com/NIESCGERJAPAN
E-mail: www-cger@nies.go.jp

http://db.cger.nies.go.jp/portal/?lang=eng
http://www.gosat-2.nies.go.jp
https://www.facebook.com/NIESCGERJAPAN
http://db.cger.nies.go.jp/portal/?lang=eng
http://www.gosat-2.nies.go.jp
https://www.facebook.com/NIESCGERJAPAN
Low-carbon research program
A global-scale approach aimed at achieving a low-carbon and climate-resilient society

In order to achieve the internationally shared long-term vision, the so called 2°C reduction target, or at least the 1.5°C reduction commitment, we quantify in this research program GHG emission routes using scientific methods, and provide information which are necessary for preparing climate policies, such as global mitigation and adaptation policies, aiming at long-term reduction of GHG emissions.

By these activities we contribute to the implementation of a low-carbon society.

Project 2
Research on global climate risks based on integrated assessments of climate projections, impacts and policies

In this project, we create a comprehensive system of model research that better connects global climate projections (earth system models), human and terrestrial impact projections (integrated models of land use, water resources and ecosystems) and socio-economic scenarios and policy assessment (integrated assessment models). Based on this, we propose integrated climate risk scenarios that take into account the interrelationship between natural and human/social systems including the effects of countermeasures.

Project 3
Roadmap development and its empirical research towards the achievement of a global low-carbon society

We develop policy roadmaps and pathways to achieve the 2°C and 1.5°C targets of the Paris Agreement, and analyze their implementation toward a low-carbon society. For those purposes, we improve the global integrated assessment models, and based on the improved models, we assess climate mitigation policies and provide our results to international research projects. In addition, we design policies and international institutions towards climate stabilization. By providing knowledge and information obtained through our research to various stakeholders, we contribute to the establishment of a low-carbon society.
Global environmental monitoring

CGER conducts not only ground-based monitoring, but also uses ships and aircraft to monitor the atmosphere and ocean, forest ecosystems and carbon balance, thus collecting a large variety of data. Through this activity, CGER greatly contributes to the elucidation of the factors that influence global environmental change.

Aircraft monitoring of greenhouse gases over Siberia

In order to clarify the role that the vast terrestrial ecosystem in Siberia plays in the global carbon cycle, we monitor the vertical profiles and temporal variations of greenhouse gases using aircraft (3 sites) and monitoring towers (6 sites).

CONTRAIL (Comprehensive Observation Network for Trace Gases by Airliner) project

We observe CO₂ concentrations in the upper air by installing measuring equipment, developed jointly by our research institute, on board commercial airlines. By using commercial airlines flying regularly all over the world, we have been able to drastically improve the frequency and geographical coverage of our observations.

Satellite monitoring

GOSAT is a satellite which measures the concentrations of greenhouse gases from space at 666 km above Earth surface. Operating for more than 9 years after its successful launch with the collaboration of partner organizations, GOSAT measures the distribution of GHG concentrations as well as the regional emissions and absorptions of carbon dioxide and methane. Its successor, GOSAT-2, is planned to be launched in FY 2018.

Monitoring of the ozone layer

Using NIES chemical transport model, we simulate the movement of the ozone hole from the Antarctic to South America and the dramatic ozone depletion as a result.
We conduct monitoring of CO2 and other greenhouse gas fluxes in forest ecosystems at the Teshio, Tomakomai, Shirakami and Fuji Hokuroku monitoring sites. We also monitor the carbon cycle process in forest ecosystems by means of various direct and indirect observation methods. Furthermore, by standardizing observation methods and facilitating data distribution, we contribute to the strengthening of the Asian monitoring network.

Carbon balance monitoring in forest ecosystems

Atmospheric CO2 concentrations used to be 280ppm for more than 10,000 years in the past, but since the second half of the 18th century, CO2 concentrations have increased dramatically, and they have now exceeded 400ppm. At CGER, we conduct monitoring of the concentrations of greenhouse gases such as CO2 at Cape Ochiishi, Hokkaido and Hateruma Island, Okinawa, analyze the variations in GHG concentrations, and provide monitoring data on our website.

Ground-based monitoring

Atmospheric CO2 concentrations used to be 280ppm for more than 10,000 years in the past, but since the second half of the 18th century, CO2 concentrations have increased dramatically, and they have now exceeded 400ppm. At CGER, we conduct monitoring of the concentrations of greenhouse gases such as CO2 at Cape Ochiishi, Hokkaido and Hateruma Island, Okinawa, analyze the variations in GHG concentrations, and provide monitoring data on our website.

Monitoring of climate change impacts on the Alpine zone

We monitor and assess how climate change affects the seasonal change and the spatial distribution of alpine flora using automatic time-lapse cameras placed in alpine areas and aerial pictures. We also devise methods to enable the public to access these up-to-date pictures on our website by smart phones and tablets in order to raise public awareness.

Pasoh tropical forest (Malaysia)

To assess the effects of climate change and land use change on carbon cycle of tropical ecosystems in Southeast Asia, we conduct long-term monitoring of tree census and soil respiration in the lowland tropical forest of Pasoh Forest Reserve. We also measure the vertical CO2 concentration profiles to clarify the strength of CO2 uptake in the tropical region.

Mt. Fuji (3776 m)

On the top of Mt. Fuji, we are conducting continuous monitoring of background CO2 concentrations in the East Asian region where data on CO2 concentrations have, up to now, not been available.
For future projections of climate change, it is important to monitor and clarify the sea-air CO2 flux distribution of the ocean. Through monitoring of the partial pressure of CO2 (pCO2) in the sea surface water on the North Pacific and Japan-Oceania routes, we clarify the distribution and long-term variation of pCO2 between the ocean and the atmosphere. Parallelly, we also carry out atmospheric observations of the longitudinal distributions and temporal variations of GHGs and related species. In addition, on the Asian route, we investigate the distribution and temporal variation of atmospheric tracer gas emissions from Asian countries.

Ship-based monitoring

Through long-term monitoring of the changes in the distribution of coral species around Japan, which is the northern limit of coral distribution, and the genetic change of their symbiotic microalgae zooxanthellae, we assess the impacts of rising water temperature, caused by global warming, on marine life.

Ocean ecosystems and climate change

The amount of organic compounds produced from phytoplankton in the seawater is extremely small, but they play an important role in the biochemical system of the ocean, and because they are emitted into the atmosphere, they also affect Earth’s climate. Dimethyl sulfide (DMS) is one such compound. Once DMS is emitted into the atmosphere, it is oxidized to sulfur dioxide, sulfuric acid, and sulfate aerosols by photochemical reactions. These acidic compounds influence atmospheric chemistry, and contribute to the formation of cloud condensation nuclei. In recent years, we have been able to conduct continuous field observations of organic compounds dissolved in the seawater, thus getting a clearer picture of the impacts of marine ecosystems on the atmosphere and climate.
The Center for Global Environmental Research (CGER) was established in 1990 as the focal point of environmental research in Japan, with the aim to scientifically clarify the impact humankind has on the global environment, and to build the foundation for accurate environmental protection measures. CGER is the center for climate change research at the National Institute for Environmental Studies (NIES).

Furthermore, CGER promotes research on low-carbon societies and supports global environmental research by developing environmental monitoring databases, making available its supercomputer, and arranging data processing and analysis environments.

Outline

The Center for Global Environmental Research (CGER) was established in 1990 as the focal point of environmental research in Japan, with the aim to scientifically clarify the impact humankind has on the global environment, and to build the foundation for accurate environmental protection measures. CGER is the center for climate change research at the National Institute for Environmental Studies (NIES).

Furthermore, CGER promotes research on low-carbon societies and supports global environmental research by developing environmental monitoring databases, making available its supercomputer, and arranging data processing and analysis environments.

Affiliated offices

- **Global Carbon Cycle Research Section**
 - Global Carbon Cycle Research Section
 - Global Atmospheric Chemistry Section
 - Satellite Remote Sensing Section
 - Biogeochemical Cycle Modeling and Analysis Section
 - Climate Modeling and Analysis Section
 - Climate Risk Assessment Section
 - Office for Atmospheric and Oceanic Monitoring
 - Office for Terrestrial Monitoring
 - Office for Global Environmental Data Integration and Analysis
 - Collaborative Research Group on Data-Model Fusion Planning
 - Collaborative Research Group on Emission Inventory
 - Global Carbon Project (GCP) Tsukuba International Office
 - Greenhouse Gas Inventory Office (GIO) of Japan
 - Satellite Observation Center

Related research project collaboration division
- Climate Change Strategy Collaboration Office/OFFICE for Coordination of Climate Change Observation (OCCCO)
- Social Dialogue and Co-production Office

NIES supercomputer system

We operate a supercomputer system in cooperation with the Environmental Information Division at NIES to perform large-scale model calculations to predict global environmental changes such as climate change, and make the computer system available for use by researchers both within and outside NIES.

Global Environmental Database

CGER develops and maintains the Global Environmental Database (GED), in which various information on the global environment is collected, processed and archived. GED provides a unified search system, a quick data visualization tool and data analysis tools to provide easy-to-use data to researchers as well as to the general public.

Dissemination of research results

Through its website, research reports and other publications, and by organizing events such as Open House and seminars, CGER facilitates the efficient dissemination of research results, promotes collaboration among environmental researchers, and contributes to raising awareness about environmental issues among the public.

Concurrent members

- Director
- Deputy Director
- Deputy Manager
 - Observation Management Group I
 - Observation Management Group II
 - Information and Public Relations Group
 - Support Group
- Concurrent members

Examples of Supercomputer output: RCP8.5 (“Business-as-usual”) scenario

- Temperature increase due to snow and ice melting
- Temperature increase in Japan follows the global mean: increase in hot summer days
- Temperature increase due to soil drying

Example of Supercomputer output: RCP8.5 (“Business-as-usual”) scenario

- Temperature increase due to snow and ice melting
- Temperature increase in Japan: increase in hot summer days
- Temperature increase due to soil drying