can be seen in the middle to upper sﬁatosphere in the Northern Hemisphere. This effect may be
responsible for the decrease in stratospheric temperature at high latitudes (Fig. 30) where a positive
anomaly for total heating was found (Fig. 35). On the other hand, the increase in meridional eddy
transport of moisture in the troposphere (Fig. 43) may be attributable to the overall increase in water
vapor in the atmosphere.

Changes in precipitation (Fig. 44} and its components (Figs. 45 and 46) and in river runoff
(Fig. 47) occur at smaller spatial scales than those in temperature. In general, precipitation increases
inregions where much precipitation was computed in the Crun. It was also found that the interannual
variability of precipitation at low latitudes was much affected by the model ENSO and interdecadal
varlations shown in tﬁe previous section. Increase in precipitation at high latitudes did not contribute
to an increase in snow depth except for the polar region (Figs. 48 and 49) because of the warming
effect. |

A shift of air mass due to the warming contrast between the oceans and continents can be seen
in the change in sea level pressure (Figure 50). A distinct positive anomaly in sea level pressure was
found in the subtropical North Pacific Ocean. Soil moisture (Fig. 51) decreased over almost all the
continents at middle latitudes, suggesting that the change in soil moisture enhanced the ocean-land
warming contrast.

Finally, changes in clouds (Fig. 52) and components of heat fluxes at the top (net downward
shortwave radiation, Fig. 53; net outgoing longwave radiation, Fig. 54), and at the surface of the
atmosphere (sensible heat, Fig. 55; latent heat, Fig. 56; net downward shortwave radiation, Fig. 57,
net upward longwave radiation, Fig. 58) are shown. In relation to the change in sea ice in the

Okhotsk Sea, a large decrease in sensible heat flux can be seen over the Okhotsk Sea (Fig. 55).

6 Concluding remarks

A coupled atmosphere-ocean general circulation model has been developed. The model is char-
acterized by two aspects; a relatively high resolution of the oceanic compoenent at low latitudes to
simulate El Nific phenomena and an elaborate sea ice model to simulate seasonal variations of sea

ice coverage and thickness. The transient response of the climate to gradual increase in atmospheric
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Fig. 43 AsinFig. 32 but for meridional eddy moisture transport. Contour intervals are 1 g/Kg-m/s
(upper panel) and 0.3 g/Kg-m/s (lower panel).
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Fig. 44 Change, G - C, in annual-mean precipitation (mean of years 51-70). Contour interval is
0.5 mm/day.
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Fig. 45 Annual-mean precipitation due to large scale condensation for the C run (upper panel)
and its change, G - C, (lower panel). Both are averaged over years 51-70. Contour intervals
are 0.3 mm/day (upper panel) and 0.1 mm/day (lower panel).
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Fig. 46 As in Fig. 45 but for precipitation due to cumulus convection. Contour intervals are 1
mmy/day (upper panel) and 0.5 mm/day (lower panel).
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Fig. 47 As in Fig. 45 but for river runoff. Contour intervals are 0.1 mm/day (upper panel) and
0.05 mm/day (lower panel). _
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Fig. 48 As in Fig. 45 but for frozen soil moisture of the surface layer. Contour interv
(upper panel) and 0.05 (lower panel).
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Fig. 49 As in Fig. 45 but for snow mass. Contour intervals are 2 cm (upper panel) and 1 cm
(lower panel).
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Fig. 50 As in Fig. 44 but for sea level pressure. Contour intervals is 0.5 hPa.
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Fig. 51 Asin Fig. 45 but for soil moisture of the surface layer. Contour intervals are 0.1 (upper
panel) and 0.05 (lower panel). .
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Fig. 52 Asin Fig. 45 but for cloudiness. Contour intervals are 10 % (upper panel) and 1 % (lower
panel).
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Fig. 53- As in Fig. 45 but-for downward shortwave radiation at the top of the atmosphere. Contour
intervals are 30 W/m? (upper panel) and 3 W/m? (lower parel).
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Fig. 54 Asin Fig. 45 but for outgoing longwave radiatjon at the top of the atmosphere. Contour
intervals are 20 W/m? (upper panel) and 3 W/m? (Jower panel). -
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Fig. 56 As in Fig. 45 but for cvapdration (latent heat flux) at the surface. Contour intervals are |
mmy/day (29.1 W/m?) (upper panel) and 0.2 mm/day (lower panel).
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Fig. 57 Asin Fig. 45 but for net shortwave radiation at the surface. Contour intervals are 30
W/m? (upper panel) and 5 W/m? (lower panel). ‘
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Fig. 58 AsinFig. 45 but for net longwave radiation at the surface. Contour intervals are 10 W/m?
(upper panel) and 3 W/m?® (lower panel). - - S S '
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