1 Introduction

A quantitative evaluation of climate change such as the global warming is impossi-
ble without a high-quality numerical model which incorporates the dynamical and
physical processes of the climate system including the circulations of the momen-
tum, energy and materials. The numerical models are also useful tools to help
our understanding of the dynamics of climate system. Although there already
are a number of comprehensive climate models, none of them are complete and
further improvements are still needed. One of the most important points is the
incompleteness of parameterization schemes of physical processes. A number of
parameterization schemes are proposed for each process, but there is no common
agreement which parameterization scheme is the best one.

We have developed an atmospheric part of the model, i.e., an atmospheric general
circulation model, which is named CCSR/NIES AGCM. The model is based on
a simple global atmospheric model developed at University of Tokyo (Numaguti,
1993). The basic standpoint in the development is to build the model based on
simple but sound physical basis and to be less dependent on empirical parameters.
Effective model code was employed to make possible a long-term integration with
high resolution. In addition, considerable attention was paid to the readability and
module compatibility of the model code to enable community use of the model.

2 Description of the Model

2.1 Overview of the Model

The model is based on the global three-dimensional primitive equations and uses
spectral transformation method in horizontal and grid differentiation on sigma coor-
dinate in vertical. The physical parameterization includes a radiation scheme with
two-stream k-distribution method, simplified Arakawa-Schubert cumulus scheme,
prognostic cloud water scheme, turbulence closure scheme with cloud effect, oro-
graphic gravity wave drag, and a simple land-surface model. The characteristics of
the model are summarized as follows.

Basic Equations :

Three-dimensional hydrostatic primitive equations on sphere with normalized
pressure (o) coordinate.

Prognostic Variables :

Horizontal velocities v = (u,v), temperature T, surface pressure ps, specific
humidity ¢, cloud liquid water !, soil temperature T,, soil moisture W,, snow



amount W, river water storage W.,.

Discretezation :

Spectral transformation method with Gaussian grid in horizontal and an grid
differentiation (Arakawa and Suarez, 1983) in vertical, Leap-frog scheme and
semi-implicit scheme for time integration.

Resolution :
Variable, standard resolutions are T42 (2.8° grid) and T21 (5.6° grid) in
horizontal and 20 levels and 11 levels in vertical.

Physical Processes :

o Two-stream k-distribution scheme for radiative transfer (Nakajima and
Tanaka, 1986).

o Simplified Arakawa-Schubert cumulus parameterization (based on Arakawa
and Schubert, 1974, Moorthi and_ Suarez, 1992).

e Large-scale condensation with prognostic cloud water scheme (based on
Le Treut and L1, 1991).

¢ Orographic gravity-wave drag scheme (McFarlane, 1987).

o Mellor-Yamada level 2 turbulence scheme (Mellor and Yamada, 1974),
with simple cloud effect.

¢ Bulk scheme for surface fluxes (Louis, 1979, Uno et al., 1995)
o Multi-layer treatment of land-surface energy budget.

¢ Bucket model for land-surface hydrology.

¢ River runoff routing model (Kanae et al., 1995).

Optional Features :

¢ Plug-in-compatible alternative physical parameterization schemes

o Transport of arbitrary number of scaler variables including transport by
cumulus convection.

Thermodynamical ocean mixed layer model with prognostic sea ice.

One-dimensional physics-only model.

Two-dimensional longitude-height model.

Two-dimensional latitude-height model.

Divergent and non-divergent barotropic model.




2.2 Prognostic Variables and Equations

The prognostic variables of the atmospheric part of the model are zonal and
meridional velocity (u,v), temperature T, surface pressure ps and mixing ratios of
arbitrary number of components ¢;, including water vapor (specific humidity) ¢, and
cloud liquid water !, In addition to them, there are prognostic variables in the land
surface sub-model, namely soil teinperature T,, soil moisture W,, snow amount W,
and river water storage W,.

Atmospheric prognostic equations are zonal and meridional momentum equations,
thermodynamic equation, and continuity equations of total mass and components.
The integration of these prognostic equations are divided into two steps. The first
is the “dynamics step” and treats adiabatic advective processes in resolvable scale.
The second is the “physics step” and treats other processes, namely diabatic heating,
source and sink of materials, and advective processes in subgrid un-resolvable scale;
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In the dynamics step, the zonal and meridional momentum equations are con-
verted into the vorticity and divergence equations. The continuity equation of total
mass is converted into the tendency equation of surface pressure by use of o vertical
coordinate. In the physics step, the zonal and meridional momentum equations, the
thermodynamic equation, the equations of total mass, and the equations of mixing
ratio of the components are integrated in each vertical one-dimensional column.

2.3 Model Dynamics

In the dynamics step, tendencies by advective processes are calculated and time
integration is done without the effect of physical processes. The time integration
are done by use of semi-implicit method {e.g., Bourke, 1988). In this method, the
tendencies in the dynamics step are divided into three categories. The first is
the linear advective terms and represent the contribution of linear gravity wave-
type motions. The second is the nonlinear advective terms and represent the
contribution of nonlinear advection including Coriolis and metric effect. The last is
the horizontal diffusion terms. The linear advective terms are treated in trapezoidal



implicit scheme, the nonlinear advective terms are treated in leap-frog scheme, and
the horizontal diffusion terms are treated in the backward scheme.
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The spectral transformation method is used in this calculation. The nonlinear
advective terms are calculated in the grid space and converted into the spectral
space. The prognostic variables themselves are also converted into the spectral
space. Then the liner advective terms and the horizontal diffusion terms are calcu-
lated and the time integration is applied in the spectral space. After integration,

the prognostic variables are converted into the grid space.

The basic equation for the dynamics steps are (Haltiner and Williams, 1980), the
continuity equation:
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the vorticity and divergence equations:
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the thermodynamic equation:
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where ) is longitude, ¢ latitude, o = p/ps normalized pressure, p pressure, ps surface
pressure, v = (u,v) zonal and meridional velocity, ¢ vertical velocity, f = 2Qcosyp
Coriolis factor, T temperature, ¢; mixing ratio of components, R atmospheric gas
constant, x = R/C,, where C, atmospheric specific heat in constant pressure. T, is
virtual temperature, which is defined as,

T.=T(1 +e,q-1) , ' (17

where ¢ is mixing ratio of water vapor (specific humidity) and [ is mixing ratio
of cloud liquid water, and ¢, = 0.608 is ratio of specific mass of water vapor and
atmospheric gas. ;

The terms D{¢), D(D), D(T), D(g:) are horizontal diffusion terms and represented
in hyper-viscosity type formula, :
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where n = 4 is used for default.
Applying the boundary condition of vertical velocity at top and bottom of the
atmosphere,
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the continuity equation is converted to the tendency equation of surface pressure,
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and diagnostic equation of vertical velocity,
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These equations are vertically differentiated following Arakawa and Suarez
(1983).
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The spectral transformation using spherical harmonic functions are applied as,
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and zonal wavenumber m. In the latter formula, the Gauss- Legendre method
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of numerical integration is used and thus w; is the Gaussian weight and ); is
the Gaussian latitude. The terms including horizontal derivative can be precisely
calculated in the spectral space. For example, spectral values of the vorticity and
divergence calculated from the grid values of zonal and meridional wind,

G o= W {vi;} = W, {w;}) (35)
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where W; {} and W, {} represents spectral transformation with horizontal differ-
encing and defined as,
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The equations in descretized form in spectral space are:
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Dividing the terms of linear advective terms and nonlinear advective terms (with
subscript NG) using vector form D = {D;}, T = {7}, the equations can be written

as,
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where C, G are vectors and b, W are (k x k) matrices. By using expressions,
1 _
6tX = m (Xt+At _ Xt At) , » (47)
-X-t = % (XH-Af + thAt) , (48)
they become,
or
o= (%) o1, (49)
50 =22 V2(®5+ WT' + G7t) — Dy (D'
. _ e ( +2At6, D), (50)
Bt NG
_ orT =t t— At
6T = | — —AD —Dy(T + 2At6,T) . (51)
9t/ ne

These equations are easily solved by using linear matrix calculation.

2.4 Physical Parameterizations

The physics step treats radiative transfer, clouds and large-scale condensation,
cumulus convection, vertical turbulent fluxes, gravity wave drag, and land surface
processes. Prognostic estimation of temperature and sea-ice volume in the oceanic
mixed layer is considered as an optional feature.

The physics step is divided in three parts. In the first step, the time change of
the the prognostic variables by large-scale condensation and cumulus convection
are calculated. In the second step, the time change of the prognostic variables by
radiative transfer, vertical turbulent fluxes, gravity wave drag, and land surface

processes are calculated as,
dx _ OF,

FI-
where F) represents the vertical fluxes of x (pv, pC,9, pg:). This equation is vertically
descretized in grid difference and solved in an implicit manner. In the last step, the
dry convective adjustment and adjustment of total mass are done.

(52)
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241 Radiative Transfer

Radiative transfer scheme employed in CCSR/NIES AGCM is based on the two-
stream discrete ordinate method and the k-distribution method (Nakajima and
Tanaka, 1986). The details of the scheme is described by Nakajima et al. (1995).
The radiative fluxes at each level interface is calculated considering solar incidence,
absorption, emission and scattering by gases clouds and aerosols. The calculation of
the flux is done in 18 wavelength regions. Band absorption by H;0, COq, O3, N,O,
CH, and 16 species of CFCs are considered by k-distribution method with one to six
sub-channels in each wavelength region. Continuum absorption by H,O, O, O; are
also included. Rayleigh scattering by gases and particle scattering and absorption
by clouds and aerosol particles are considered.

The spectrum of solar and terrestrial thermal radiation are divided into 18
wavelength regions (channels). The boundaries of the channels are (in cm™1) 50,
250, 400, 550, 770, 990, 1100, 1400, 2000, 2500, 4000, 14500, 31500, 33000, 34500,
36000, 43000, 46000, 50000. Each channel is divided into several (one to six for
standard version) subchannels by use of k-distribution method. The total number
of subchannel is 37 for standard version. The radiative flux of each channel is
calculated as the weighted sum of the radiative flux of each subchannel,

F¥(z) = S wiFE () (53)

where F;f(z) and F;(z) are the downward and upward radiative flux components and
and w; is k-distribution weight for sub-channel i. In the selection of k-distribution
subchannel and weight, the correlated k-distribution method is used and objective
minimizing of number of subchannels is considered. '

The radiative flux components of each sub-channel is calculated with two-stream
discrete ordinate method (DOM). Each atmospheric layer is considered as a homo-
geneous layer. The transmissibity 7%, reflectivity R* and source function £ (+: for
downward incidence, —: for upward incidence) of each layer for each subchannel
are calculated as functions of optical depth r, single scattering albedo w, asymmetry
factor g (the first term of Legendre expansions of phase function) cutoff factor f (the
second term of them), Plank function B, solar incidence S and solar zenith angle yq
(Nakajima and Tanaka, 1986). In this calculation, the delta-two stream truncation
(Joseph et al., 1976)

1-f g-/f
99 — b}
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is used. The Plank function is calculated from the temperature using polynomial

functional fitting and expanded as a quadratic function of optical depth in each
layer (Stamnes et al., 1988).

T—{1l-wf),we

(54)
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The transmissibity, reflectivity, and source function for the layer which is the
combination of adjacent two layers (for example, a lower layer 1 and an upper layer
2) are calculated by the adding method as,

Rf; = RI+T;(1-R{R;)'RITS (55)
T, = TF(1-RER)'T (56)
¢, = e +TH(1 - RER;) (R +¢f) (57)

R-,T-,¢ are calculated in the similar manner by exchanging the role of the
upper and the lower layer in the formula. By iterating this procedure, the bulk
transmissibity, reflectivity, and source function of arbitrarily thick layer can be
calculated. Then the diffusive radiative fluxes of each layer interface are calculated
as,

fiape=0- RexRiw) edx + Rigeiso) (58)
fiiap = Ry 1 flaye + it (59)

with boundary conditions at the top,

f:-1/2 =0 (60)
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The total radiative fluxes are the sum of diffusive fluxes and the direct solar fluxes,
Fk+—1/2 = f:—lﬂ + proe” ™K/ k08 (62)

and F 5 = fi_ip where 7 i is the integrated optical thickness between layer &
and K.
The optical depth of each sub-channel 7, is calculated as,

n=3 1+ N+ Y, _ (63)
b] J m

where 73, is optical depth of band absorption by gases j, 7°°" is optical depth of
continuum absorption by gases 7, and 7, is optical depth of extinction by particle m.
These optical depth are calculated as,

5 = ai;(p, T)r; , ) (64)

where r; is partial volume of gases j and the factor a;;(p, T') is expressed in polynomial
functional fitting deduced from HITRAN and LOWTRAN database in the form,

a(p,T) = exp {): 3 Anm(In p)*(T — To)”‘} . (65)
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The optical depth of continuum absorption of HyO is calculated in proportion to
square of the partial volume of H;O

88% = (A™0 4 f(T)AMO)(rpy0)?pA2 (66)

The single scattering albedo w, asymmetry factor g, cutoff factor f are also calculated
as optical thickness-weighted mean of the each components.

Two type of cloud is considered in the flux calculation. One is the cumulus cloud
and the other is large-scale cloud. In each vertical column, the fractional cloudiness
of cumulus cloud is assumed to be a constant between the cloud base and the
cloud top of tallest cloud and zero elsewhere. For the large-scale cloud, random
overlapping of clouds is assumed. There are two options in accounting for the effect
of cumulus cloud. On option is to calculate radiative flux for two cases separately,
one with only cumulus cloud and one with only large-scale cloud, and calculating
the weighted average of them:

F=CF+(1-CF, (67)

where C° is cumulus cloudiness, F° is radiative flux with cumulus cloud, F
is radiative flux with randomly overlapping large-scale clouds. The former is
calculated with the cloud liquid water mixing ratio of
Ie |
ré = C—" . (68)
In the calculation of F', two values of the transmissibility R, of each layer is
evaluated with (cloudy) and without (clear) the cloud water,

I
Cy’
and the average of the transmissibility R, (function of cloud water) with the weight
of cloudiness '

o=

(69)

By = CeRi(ri) + (1 — Ci)Ri(0) (70)
as well as the average of the reflectivity and source function are used for the filux
calculation with adding method.

The other option is to mix the cumulus cloud and large-scale cloud before calcu-

lating the radiative flux. In this option, only one flux calculation is done assuming
the random overlap with the averaged transmissibility,

Rk = CkRk(FL) + (1 — Ck)Rk(O) s (71)
where mixed cloudiness C, and mixed cloud water 7, are,
G = 1-(1-C(1-C0O) (72)
- L + 1§
A= kC'k k. | (73)
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In the calculation of radiative properties of clouds, two type of cloud particle,
liquid cloud and ice cloud, are considered. The fraction of the liquid cloud f; is the
same as (80).

The calculation of radiative transfer is usually done every three hours. The fluxes
of longwave region is corrected at each time step accounting for the change of surface
skin temperature. The fluxes of shortwave region is assumed proportional to cosine
of solar zenith angle at each time step.

2.4.2 Large-scale Condensation

The large-scale condensation scheme describes grid-scale condensation and precip-
Itation processes and gives condensational heating, precipitation, cloud fraction as
diagnostic variables and time-change of mixing ratios of components, especially for
the water vapor and cloud-water. The scheme is developed based on the scheme of
Le Treut anmd Li (1991).
The total water mixing ration is defied as the sum of the specific humidity ¢ and
cloud-water mixing ratio /.
¢ =g+l (74)

Subgrid probability distribution of total water mixing ration in each grid box is
assumed as an uniform distribution between (1 — b)¢* and (1 + 5)3, where g is the
grid-averaged value. Then the fraction of the supersaturated part in the grid box C"
is,

0 (1+6)¢ <¢
) A+ —-¢ . o
C'= 57 1-8F<g¢<(1+b)] (75)
1 1-b)<q

where ¢* is the saturated specific humidity. Cloud water mixing ratio is estimated
as the integral of supersaturated part of the water:

0 1+ <q
148 -¢7°
I= [( _ =t * —t 76
—di7 (I1-0)F <¢ <(1+b)g (76)
i-q 1=-b¢>¢

Given the specific humidity ¢ and cloud water mixing ratio /, combining these
equations with the conservation of moist internal energy, C,T + Lq, the new value
of ¢ and [ is obtained after iterations.

Cloud water mixing ratio in the cloudy part ! is,

.
== (77)
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It is divided into two parts, liquid part {;and frozen part /i,

I = fu(Ty (78)
Q- fu(TH! (79)

and the liquid fraction f;(T) is parameterized as,

I

fu(T) = - (T-Teo)/Te.]* , (80)

where Tro = 273.15K and T;. = 18K.
Flux of precipitating water Fp is calculated by

P d
FP=L(PL~E)?P+FF. (81)

where P, E, Fr are the conversion of liquid water, the evaporation of precipitating
water, and the sedimentation flux of ice particles, respectively. :
The conversion of cloud liquid water into precipitation Py is parameterized as,

!
P=24CdFp, (82)
TL

where the first term parameterizes the autoconversion process and the second term
parameterizes the correction terms. 7 is the time scale of precipitation and given

as,
Y
L= To {1 — exp [— (i) ] } , (83)

where 79 = 1 x 10%s and I = 3 x 10~*, while the coefficient for correction is
C. = 1m?/kg. The sedimentation flux of ice particles is parameterized as,

Fr = Vrplr = VR(plr)" (84)

where V2 = 6m/s and v = 0.17.
Evaporation of precipitating water is parameterized as,
Fp
VT L]
where g, is wet-bulb saturation humidity and kg = 1.0.
The precipitation is regarded as solid precipitation (snow) when the wet-bulb
temperature is below the freezing point (273.15K). Melting of the solid precipitation
is then considered where the wet-bulb temperature exceeds the freezing point.
The precipitation at the surface is regarded as snow (rain)} when the wet-bulb
temperature in the lowest atmospheric layer is below (over) the freezing point.
Finally, the 2/3 power of the cloud area fraction C’ is considered as the horizontal
cloud coverage for the radiative flux calculation.

C = (C")*3 (86)

E= kE(un - Q) (85)
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2.4.3 Cumulus Convection

The cumulus parameterization scheme is based on Arakawa and Schubert (1974)
with several simplifications. The tendency of large-scale field by cumulus convection
18 expressed in the mass flux form as:

dh dh

__a = M—gZ+D(h - R), (87)
99 _ p% dyfd_a

5 Maz+D(q +l q), (88)

where, k = CpT + L§ + g2, are the moist static energy and specific humidity of the
large-scale filed, M is the vertical mass flux of cumulus cloud, D is the detrainment
mass flux of cloud into large-scale environment, and %%, ¢, I? are moist static energy,
specific humidity and cloud water mixing ration of the cloud air detraining into the
large-scale environment.

Considering spectrum of clouds with dlﬁ'erent cloud top height, the vertical mass
flux M and detrainment flux D are written as the sum of the contribution of the
each cloud:

E‘
O
I

Z Bn'(2) , (89)
D(z) = Z_MBD' (2), (90)
where Mp is mass flux at cloud base z = zg and ' is the non-dimensionalized

vertical distribution of mass flux. The non-dimensionalized vertical mass flux is
assumed as a linear function of height (Moorthi and Suarez, 1992),

irv 1+X(z—28) z>zp

where ) is entrainment rate. The thermodynamic propertiés in the cloud are
determined as,

i(,,h-') = XE, 92)
a o
az(nw) = A, (93)

where hf is the moist static energy of i-th cloud, w! is the adiabatic total water
mixing ratio of i-th cloud in which the precipitation is neglected. The liquid water
mixing ratio are then calculated assuming that the prescribed ratio r(z) of the
adiabatic liquid water wi(z) — ¢'(z) precipitates below the height z:

I(z) = (1 - r(2)) [wi(z) - ¢'(2)] . (94)
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The specific humidity ¢'(z) is the saturated specific humidity in the cloud and
calculated from A'(z). The precipitating ratio r(z) is parameterized as,

r(z) = e—(z — zB)/h, (95)

where 4, = 4000m.

The cloud base height is determined as lifting condensation level of the surface
air. The relation between the entrainment ratio X' and the cloud top height z% is
determined by the requirement that the buoyancy of the cloud,

B=%1-T) (96)
T .
vanishes there. The mass flux »* is zero over the cloud top height and the
detrainment is occur at the cloud top,

Di(z) = n(2)b(z — 24) (97)

where §(z) is the delta function. Given the large-scale thermodynamic state 2 and
g, the thermodynamic state of cloud A‘ and ¢' are calculated as a linear function of
entrainment ratio A'. The entrainment ratio corresponding to given cloud top height
z% is then easily calculated with the requirement of vanishing buoyancy B = 0 at
z=zh.

In order to determine the cloud base mass flux Mgz, the cloud work function
(Arakawa and Schubert, 1974),

27
A= j Brdz (98)
zg

is used. The cloud mass flux is nonzero where A > 0. Usually the cloud work
function is reduced by the warming and drying of large-scale field with cumulus
convection. The cloud mass flux is determined so as to the cloud work function
vanishes in a specified time scale of . To estimate this, the method of virtual
displacement is used. A unit mass flux M, is specified and the warming and drying
of large-scale field is calculated. Then the cloud work function after the change of
large-scale field A’ is calculated and,

A At
MB-MOA_A’T. (99)
A part of the precipitating water P is evaporated as,
' P
E=po@a—0(7) (100)
T

where g, is wet-bulb saturated specific humidity, V- is terminal velocity of precipita-
tion, and a., b. is a constant. The standard value istakenas a, = 0.3 and Vr = 10m/s.

19



A fraction f; of the evaporation of precipitating water creates the downdraft. The
downdraft start the level of minimum moist static energy k and the air which is just
saturated by evaporation entrains at each level.

oM? E

5: = g (1oL

The fraction f; is assumed constant and its standard value is 0.5. Freezing
and melting of precipitation is considered in the same way for the large scale

condensation.
The fractional cloudiness for the calculation of radiation is parameterized as,

C° = Comax {ln %, 0} \ (102)
My

where M,, is the maximum value of cumulus mass flux within the vertical column.
The averaged liquid water mixing ratio is parameterized as,

=Y aMil . (103)
The standard value is a = 0.3, My = 2 x 10~%kg/m?/s. and Cy = 8 x 1072,

Vertical transport of components other than the water is calculated similar to that
of the water vapor.

2.44 Gravity Wave Drag

The effects of orographically exited subgrid scale internal gravity wave is parame-
terized following McFarlane(1987)
The vertical momentum flux of internal gravity wave is given,

Te = pa Epzip Ny, , (104)

where zgp 18 the standard deviation of the surface height within the grid box, N, is
Brunt-Baisala frequency, and E; is a constant. The vertical momentum flux in the

atmosphere is,
2 . 3
7(z) = min {'r(z - Az}, pE]{ch (v ‘v,,) } ) (105)

A

where F. is critical Frude number.

2.4.5 Turbulent Fluxes within the Atmosphere

The level 2 scheme of turbulence closure model by Mellor and Yamada(1974, 1982)
is used for the subgrid vertical fluxes of prognostic variables.

dx

F, = _Kx'gg . (106)
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The diffusion coefficient K, is calculated by

; d|v|
Ky =1=5=5. (107)
Here ! 1s mixing length and estimated as
kz
= ————
14 kz/lp’ (108)

where k is Karman constant : is the height over the surface and [y is asymptotic
mixing length and taken to be 300m. S, is estimated as functions of Richardson
number R;

99
Ri= 292 (109)
a_v
. Jz
S, for potential temperature and mixing ratios Sy and for momentum S); are,
' 1/2
Su = (Bl - Rn)Su)" Sn (110)
1/2
Su = (Bi(1 - R)Su)" Su (111)
where,
' oo — ag Ry
Sy = T _R, R; (112)
- B2R
Gy = DBbBRis (113)
M Bs— BBy "
Here the flux Richardson number R, is the solution of |
BoR% — (B + BaRi) Ry + BeBs (114)

and, oy = 3Ag71, az = 3Az(n+72), AL = A1Bi(m —C1), B2 = A1[Bi{m1—C1)+6A1+3A4,),
Bs = A2Bim, Bs = Az2[Bi(m +v2) —3A1], m = 1/3 - 2A1/ By, v2 = B2/ By + 641/ B,.
The nondimensional constants are given as, A; = 0.92,45 = 0.74, B, = 16.6, By =
10.1,C, = 0.08.

Effect of condensation for the turbulent flux is incorporated by applying a correc-
tion for the Richardson number.

R™ = R; +aC(R; - R)), (115)
where C is cloudiness, a is a tunable parameter (0.5 in default) and R is the
Richardson number with saturation equivalent potential temperature 4:,

g 08;
R — 8, Oz

(Y,
Oz

(116)
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A minimum value of diffusion coefficient K, is specified as a function of height
from the surface z, '

Komin = Ko {1 +ag [1 - tanh (z - "‘)]} (117)

Ze

where Kq = 0.15m?%s, ax = 2, z. = 3000m, and z, = 1000m.

24.6 Turbulent Fluxes at the Surface

The vertical fluxes at the surface is estimated by a bulk formula based on Louis(1979)
with modification by Uno et al. (1995).

Fy = _pCMlvulva (118)
Fy = pCpCxva|(Ty — Tuoy) (119)
Fy = BFF = BpCxlva|(¢"(T]) - ¢a) (120)

Here T, is the surface skin temperature described in the next subsection. The
subscript a represents the lowest level of the model. 3 is the evaporation efficiency
and represents the effect of water stress of the land surface. FqP is the potential
evaporation calculated without the effect of soil water stress (3 = 1; see next sub-
section). The bulk coefficients Cys, Cyr, Cg are calculated from the bulk Richardson
number R;s and the roughness length of the surface, zp = zoam, 20m, z05- The bulk
Richardson number R;p is calculated as,

gg-ABAz

Rpg=—""—-." 121
B | Av|2 ( )
where Ay means the difference of x between the lowest model level and the surface.

The bulk coefficients Cyy, Cy, Cg are represented by,

Cy = FuCp (122)
Cm = FuguClp (123)
Ce = FugeCp (124)
where,
k2
Cp=—— (125)
In (%)

is the bulk coefficient for the neutral atmosphere. The stability factor Fyy and Fy
are represented as,
bRy
B 1+ CM|R2'0P/2
bR
" 1+ cy|Rig|'/2

(126)

Fy =

Fy = 1 azmn
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for R;g < 0 (unstable case) and

1
Fu =i = Gy (128)
for R;g > 0 (stable case). Here,
Rip = guRiip (129)
g = (1 +#H—_‘/;.{—M) (130)
F,
9 = (1+#E\/;—M) | (131)
In (2 '
P'H = (ZOH) (132)
In (%)
_ () -
Hg = (133)
In ()
2 \1/2
oM = dMCDb(z—:) y (134)
2 \}/2 , ,
o = dHc_’Db(z—“o) (135)

and b= 9.4,¥ = 4.7,dpr = 7.4,dy = 5.3. These equations are solved iteratively.
The effect of free convective motion is incorporated to the surface wind speed |v,|
following to Miller et al.(1992).

1/2
?

|va| = (u2 + 02 + (w*)?) (136)

where '
w* = (max{Hp(Fr/C, + &, ToF) ),0})/? (137)

and Hp = 2000m. Further a minimum value of the surface wind speed |v,.| is
introduced and taken to be 4m/s.

2.4.7 ' Surface Submodel

The surface submodel gives the surface skin temperature T,, the evaporation
efficiency 3, roughness length 29, 205, zog, and surface albedo a, for the calculation
of surface fluxes of momentum, heat, and water vapor, and radiative fluxes. In order
to estimate these values considering the internal dynamics of the surface, three
prognostic variables are incorporated. They are, ground temperature 7,, ground
wetness W,, snow amount W,. Also, the river water storage W, is prognostically
determined to calculate the runoff to the ocean.
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The surface skin temperature T, on the land is implicitly determined by the energy
balance at the infinitely thin skin of the surface,

Fr(T,,T.) + LBFF + Fa(T,) — Fo(T,,T,) = 0, (138)

where Fr, F, F, are temperature (sensible heat) flux, net radiative flux, and ground
heat flux at the surface. All fluxes are positive upward. The potential evaporation
FqP is determined by the same equation with no surface water stress 8 = 1:

Fp(T7\T.) + LF](T]  q0) + FR(TF) - Fg(TF, T,) = 0. (139)
The ground heat flux is estimated by,
, 0T,
.F‘Iq = -—Iiga—zy ) (140)

where with heat conductivity K, is specified depending on the surface type. The
ground temperature is prognostically determined by,
o7, JF,

Cogr =55 (141)

where C, is specific heat of the ground and is also specified depending on the surface
type. These equations are solved in vertically descretized form in implicit time
integration with three layers for the standard version. The evaporation efficiency 3
is estimated from the ground wetness W, and stomata resistance r, as,

r

= .ﬂ W, Wsa ) - 3 142
o= i s 142
where W,,, is saturation ground wetness, r, = (Cglv|)~! is atmospheric surface layer
resistance and v = L/Cpdq*/0T. The stomata resistance is specified depending on
the surface type. The ground wetness W, is prognostically determined by the
“bucket model” (Manabe et al., 1965),

waw%]-/-l/—g- =P-F,-R. (143)

Here P 1s the precipitation in liquid form, F, is evaporation and R is runoff flux,
and p,, is the density of the water and D, is the depth of the active layer of the
ground. The runoff occurs whenever the ground wetness exceeds the saturation
ground wetness W, to keep W, < W,. The roughness length and albedo of the
snow-free land surface are prescribed depending on the surface type. In default, the
roughness length for heat and moisture is one tenth of that for momentum.

In the presence of snow or continental ice, the surface heat balance is modified
when the solution of (138) violates the condition T, < T..,,

Fr(Tn,To) + (L + Le)BF] + FR(Tw) = Fg(To, Ty) = =L M, , (144)
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where T,, = 273.15K is the melting temperature L,, is the latent heat of fusion,
and M, is the snow melt. The snow layer is considered as a part of the uppermost
layer of the soil. Thus the heat content of the first layer and the heat conductivity
between the first layer and its adjacent layers are modified by the presence of snow.

C, = CiAz + C;W, (145)

Fy= = [(K,/A2)™ + (K,/2,)7Y] " (T, - T3) (146)

where C, is the specific heat of surface soil, Az the thickness of upper-most layer, C;
the specific heat of snow, K, the heat conductivity of snow, and z, is the snow depth,
W
z, = — (147)
Py
where p, is the density of snow, which is assumed to be p, = 400kg/m3. In
the presence of snow, the evaporation efficiency, albedo and roughness length (for
momentum, heat, water vapor) are modified as, '

B = A-f)Bs+ 1y (148)
a = (L~ fas+ fyay (149)
zg = (1— fy)ZO.J' + fy max {hyzﬂ,fs zO,y} (150)

where the subscript f represents snow-free values and the subscript y represents
the values with full snow cover.

fy = min {\/ w,/ Wyc,l} (151)

is the snow-covered ratio of the surface, and
hy = max {1 — Zy/ZO,M,O} ) (152)

where h, is the rough measure of the ratio of surface obstacles (such as trees) exists
over the snow surface, assuming that the average hight of the surface obstacles is
proportional to the momentum roughness length.
The prognostic equation of the snow amount is
aw,

=Pt bl = By~ M, (153)

where P, is snow fall (solid precipitation) 7, is rain (liqﬁid. precipitation), M, 1s snow
melt, and é,, = 1 for non-melting condition and §,, = 0 for melting condition. The
equation of ground wetness W, is modified as,

aw,
ot

pwly =1-6.,)F+M,-R. (154)
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When £, > 0 and 6, = 1, the first-layer ground temperature is adjusted accounting
* for the latent heat of freezing.

The surface skin temperature on the ice-free ocean is usually externally specified
as a function of location and time. The surface skin temperature over the sea ice is
calculated using (144) and

Fg(Ta:Tg) = FQ(TJ1TI) = kI(TI - Ta)/h[ ) (155)

here £; is heat conductivity of the sea ice, Ty = 271.35K is the freezing point of the
sea ice, and h; is the thickness of the sea ice. The evaporation efficiency of the
ocean surface is unity. The albedo and roughness length of the snow-free ice-covered
ocean are given constant (0.5 1 x10~2m by default). The albedo of the ice-free ocean
is calculated from the solar zenith angle and optical thickness of the atmosphere
(Payne, 1972). The roughness length of the ice-free ocean is calculated with the
surface momentum flux by the formula of Miller et al.(1992).

The runoff flux R is routed by the rivers. The river water storage W., is calculated

by,
oW,

ot
F, is the river water flux which is parameterized as,

= R - divF, (156)

F, =v,W,i, (157)

where v, is the representative speed of bulk river flow and the standard value is
v, = 0.3m/s. 2 is the unit vector of the direction of river, which is assigned to each
model grid over the land.

2.4.8 Boundary Conditions

The required boundary conditions are the surface type ¢, surface height 2, standard
deviation of the surface height zsp. The sea surface temperature (SST) T..,, sea ice
thickness A are also externally prescribed by monthly dataset. The daily values are
used after interpolating in time. The surface type are divided into 32 categories and
sampled from the 1x1degree grid vegetation type dataset of Matthews (1983). The
surface height and its standard deviation is calculated from 5-minutes resolution
ETOPOS5 dataset, '

The surface properties snow-free value of roughness z;, albedo o, specific heat
capacity C,, heat conductivity K,, water holding capacity D, W,, stomata resistance
r, are specified as the constants depending on the surface type.
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