THREE-DIMENSIONAL CIRCULATION MODEL DRIVEN BY
WIND, DENSITY, AND TIDAL FORCE FOR ECOSYSTEM ANALYSIS
OF COASTAL SEAS

1. Introduction

Coastal seas are receiving a great deal of attention due to the increasing use of their
resources. Escalating demands for coastal development have directed both governments and
industries to investigate the basic mechanisms that govern water circulation in coastal seas.
Knowledge of this circulation is useful for environmental management and conservation of
marine ecosystems.

The movement of water in a coastal sea is driven by such factors as freshwater discharge
from rivers, tidal excitation, intrusion of warm and highly saline ocean water at the mouth of
bays, heat transfer, and wind stress at the surface of the water. The ecosystem in Tokyo Bay is
strongly influenced by these complex factors. Thus, it is essential to analyze the water
circulation there. To simulate this system, we used a 3-dimensional numerical circulation
model developed originally by Blumberg and Mellor (1983, 1987), which is able to deal with
stratified flows occurring on a time scale of 30 days and spatial scales of 1 to 100 km. The
model was extended by Blumberg and Goodrich (1990) to include river segments as a domain
of calculation up to the point at which tidal effects are minimal. This is a major difference
between the two models, and the latter model is more favorable for simulating circulation in a

_bay with significant freshwater impact from rivers.

2. Model Description

Here we provide a relatively detailed description of a numerical circulation model called
the Princeton Ocean Model (POM; Blumberg and Mellor, 1983). The model belongs to that
class of models in which model realism is an important goal and mesoscale phenomena are
addressed, that is, activities that are 1 to 100 km long and; 30-day time scales are commonly
observed in estuaries and coastal waters (Beardsley and Boicourt, 1981). It is envisioned that
the model ultimately will be used as part of a coastal sea-forecasting program. The model is
3-dimensional, incorporating a turbulence closure model to provide realistic parameterization
of the vertical mixing processes. The prognostic variables are the three components of

- velocity, temperature, salinity, turbulence kinetic energy, and macroscale turbulence . The

momentum equations are nonlinear and incorporate a variable Coriolis parameter. Prognostic
equations governing the thermodynamic quantities, temperature and salinity account for water
mass variations brought about by highly time-dependent coastal upwelling processes as well
as horizontal advective processes. Free surface elevation is also calculated prognostically,
with only some sacrifice in computational time so that tides and storm surge events can also
be simulated. This is accomplished by use of a mode-splitting technique whereby the volume
transport and vertical velocity shear are solved separately. Other variables include density,
vertical eddy viscosity, and vertical eddy diffusivity. The model also accommodates realistic
coastline geometry and bottom topography.

The model's performance has been tested in a variety of applications (Blumberg and
Mellor, 1979a, b, 1980, 1981a, b, 1983, Blumberg, 1997), including simulation of the tides in
Chesapeake Bay, simulation of coastal circulation off Long Island, New York, and a
computation of the general circulation in the Middle Atlantic and South Atlantic bights and in
the Gulf of Mexico. The grid spacings have ranged from 1 to 50 km in these applications.



2.1 Governing Equations

The equations that form the basis of the circulation model describe the velocity and
surface elevation fields, and the salinity and temperature fields. Two simplifying
approximations are used (Bryan, 1969); first, it is assumed that the weight of the fluid
identically balances the pressure (hydrostatic assumption), and second, density differences are
neglected unless the differences are multiplied by gravity (Boussinesq approximation).

Consider a system of orthogonal Cartesian coordinates with x increasing eastward, y
~ Increasing northward, and z increasing vertically upwards. The free surface is located at z =
77 {x. y. ) and the bottom is at z = -H(x,y). If I/ and V are east and northward horizontal
velocity components, respectively, and W is the vertical velocity, the continuity equation is

The Reynolds momentum equations are
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with p, the reference density, p the in situ density, g the gravitational acceleration, and P
the pressure. A latitudinal variation of the Coriolis parameter S is introduced by use of the
plane approximation.

The pressure at depth z can be obtained by integrating the vertical component of the
equation of motion, (4), from z to the free surface n, and is

0
P(x,y,2,0)= P,,, + g+ g p(x,y,2', 1)dz’ )

Henceforth, atmospheric pressure, P,,, is assumed constant.
The conservation equations for temperature and salinity may be written as
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where Tis temperature and S is salinity. Using these two variables, density is computed
according to an equation of state of the form

p=p(T,S) ®)

given by Fofonoff (1962). The potential density © is the density evaluated as a function
of potential temperature and salinity but at atmospheric pressure; it provides accurate density
information to calculate horizontal baroclinic gradients that enter into the pressure gradient
terms, and the vertical stability of the water column, which enters into the turbulence closure
model even in deep water when pressure effects become important.
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All motion induced by small-scale processes not directly resolved by the mode! grid
(subgrid scale) are parameterized in terms of horizontal mixing processes. The terms F,, F,
Frand F, found in (2), (3), (6), and (7) represent these unresolved processes and in analogy to
molecular diffusion can be written as
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One should note that F, and F, are invariant to coordinate rotation. Although these
horizontal diffusive terms are meant to parameterize subgrid scale processes, in practice the
horizontal diffusivities, A,, and A,;, are usually required to dampen small-scale computational
noise. The diffusivities are chosen so that they do not produce excessive smoothing of real
features. The relatively fine vertical resolution used in the applications results in a reduced
need for horizontal diffusion, because horizontal advection followed by vertical mixing
effectively acts like horizontal diffusion in a real physical sense. A; and A are calculated
according to Smagorinski (1963).

1
27;
1| au, U,
A =8 E{[o’k v é}c}J (1

7 H

The Reynolds stress and turbulent heat and salt fluxes, w7 and ws , are evaluated using
the level 2 1/2 closure model of Mellor and Yamada (1982) wherein

~(ww. )=k, %(U, V) (12)
—wrl, ws)=K, —(T,5) _ (13)
Z

and the eddy viscosity and diffusivities, X,, and K, are given by

(KM:KH):lq(SM’SH) (14)

Here, / is the turbulence macroscale and ¢ = ;" is twice the turbulence kinetic energy.
The stability functions, S,, and §,;, are given in Mellor and Yamada (1982). The level 2 1/2
closure model adds two more prognostic equations to the model, describing the evolution of

2
g and ¢°l.

The set of equations (1) to (14) is then transformed using the following bottom and free-

surface o-coordinates
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o=0atz=n oc=-latz=-H (16)

where 7 is free surface elevation and # is the depth.

2.2 Boundary Conditions

The boundary conditions at the free surface, z = n(x, y), are
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where (T,,,T,, ) is the surface wind-stress vector with friction velocity, u,, the magnitude

of the vector. It is unlikely that the mixing length is reduced to zero at a surface containing

wind-induced waves as given by (17). Error is incurred in the near-surface layer of thickness

the order of the wave height. This is an area where further improvement in the model is

necessary. The quantity B,*” is an empirical constant (6.51) arising from the turbulence
closure relationship. _

The net heat flux through the water surface is 7, and § = S(0)[E - P]/ p, is surface

mass flux rate, where (E — P) is the net evaporation-precipitation of freshwater and S(0) is
the surface salinity. The net heat flux is given as follows:

H=(p,-¢,)+{¢,~¢,) &, —9. 4. (22)

where @, (incident solar radiation; short wave) is measured directly by pyrheliometer.
When direct measurement is not available, the following empirical formulae are used:

$. =6, —p, =094p (1 -0.65C? ): net incident solar radiation (23)
1 .
7 .
g, =59x107 [Tij Tﬁ(l -0.17C* ): net atmospheric radiation (24)
¢, =5.9x107(T, +273)" = back radiation from the water surface (25)
¢. = (0.000308 +0.000185W, )ple, —e, X2493 —2.267, }x10° =evaporative heat flux (26)
¢, = 269.1(0.000308 + 0.000185W, )p(7, — T.) = conductive heat flux (27)

where @, is clear sky solar radiation, @ is reflected solar radiation, @, is incident
atmospheric radiation, c is the fraction of the sky covered by cloud, e, is saturated vapor
pressure at the temperature of the water surface, e, is vapor pressure at height z, T, is water
surface temperature (°C), W, is wind speed at height z, and p is the density of the water.

On the side walls and bottom of a bay, the normal gradients of 7 and § are zero such
that there are no advective or diffusive heat and salt fluxes across these boundaries. At the
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lower boundary (b),
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where H(x, y) is the bottom topography and u,, is the friction velocity associated with the
bottom frictional stress (T,,,T,,). The bottom stress is determined by matching velocities with
the logarithmic law at the wall. Specifically,

(7 7o) = 2. ColUS + V;)”Z(Ub,Vb) (32)

with value of the drag coefficient C;, given by
C,= xz(ln(H-f z,)/ zo)w2 (33)

where z,, u, and v, are the grid point and corresponding velocities in the grid point nearest
the bottom, respectively, and x is the von Karman constant. The final result of (32) and (33)
in conjunction with turbulence-closure derived K, is that the calculations will yield

U =ty / w1, )in(z / 2,) (34)

V =z, / ru, )In(z 1 z,) (35)

in the lower boundary region if enough resolution is provided. In those instances where
the bottom boundary layer is not well resolved, it is more appropriate to specify C,= 0.0025.
The actual algorithm is to set Cpto the larger of the two values given by (32) and to 0.0025.
The parameter z, depends on the local bottom roughness; in the absence of specific
information, z ;= 1 cm is used, as suggested by Weatherly and Martin (1978).

Open lateral boundary conditions are problematic because the environment exterior to
the relevant domain must be parameterized. Two types of open boundaries exist, inflow and
outflow. Temperature and salinity are prescribed from data at an outflow boundary, wherein
at outflow boundaries

g(T,S)+ U, %(T,S): 0 (36)

is solved, where the subscript # is the coordinate normal to the boundary. Turbulence
kinetic energy and the macroscale quantity (g°/) are calculated with sufficient accuracy at the
boundaries by neglecting advection in comparison with the values of other terms in the
respective equations.

The open laterai-velocity boundary conditions in some of the applications are computed
by using the available hydrographic data in conjunction with a simplified diagnostic model.
This type of model uses only geostrophic plus Ekman dynamics and therefore solves a
simplified form of the full equations of motion. It does not require a velocity at a reference
level but only along a single transect crossing £/ contours. A detailed description of this
model can be found in Kantha et al. (1982). While the normal component of velocity is
specified, a free-slip condition is used for the tangential component.
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