
CGER’S SUPERCOMPUTER MONOGRAPH REPORT Vol. 15

Algorithms for carbon flux estimation using GOSAT
observational data

Shamil Maksyutov, Yumiko Nakatsuka, Vinu Valsala, Makoto Saito,
Nikolay Kadygrov, Tadao Aoki, Nawo Eguchi, Ryuichi Hirata, Motoyoshi Ikeda,

Gen Inoue, Takakiyo Nakazawa, Ryo Onishi, Prabir K. Patra, Andrew D. Richardson,
Tazu Saeki, and Tatsuya Yokota

Center for Global Environmental Research

National Institute for Environmental Studies, Japan

CGER-REPORT ISSN 1341-4356
CGER-I092-2010

C
G

E
R

’S SU
PE

R
C

O
M

PU
T

E
R

 M
O

N
O

G
R

A
PH

 R
E

PO
R

T Vol. 15 
C

G
ER

-I092-2010





Supercomputer Steering Committee (FY2009): 
Yasumasa Kanada (University of Tokyo) 
Akio Kitoh (Meteorological Research Institute) 
Koki Maruyama (Central Research Institute of Electric Power Industry) 
Akira Noda (Japan Agency for Marine-Earth Science and Technology) 
Takashi Imamura (NIES) 
Kunio Kohata (NIES) 
Kimio Matsumoto (EIC/NIES) 
Kazumi Kishibe (EIC/NIES) 
Yukihiro Nojiri (CGER/NIES) 
 

Coordination for Resource Allocation of the Supercomputer  
Center for Global Environmental Research 
National Institute for Environmental Studies 
 

Maintenance of the Supercomputer System  
Environmental Information Center 
National Institute for Environmental Studies 
 

Operation of the Supercomputer System: 
NEC Corporation 
 

Editorial Board: 
Center for Global Environmental Research 
 
 
 

 
Copies of this report can be obtained by contacting: 

Center for Global Environmental Research 
National Institute for Environmental Studies 
16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan 
Fax: +81-29-858-2645 
E-mail: www-cger @nies.go.jp 
 
The report is also available as a PDF file. 
See: http://www-cger.nies.go.jp/cger-e/e_report/r_index-e.html 
 

Copyright 2010: 
NIES: National Institute for Environmental Studies 
 
 

This publication is printed on paper manufactured entirely from recycled material (Rank A), in accordance with 
the Law Concerning the Promotion of Procurement of Eco-Friendly Goods and Services by the State and Other 
Entities. 
 

 



 

Foreword 

 
The Center for Global Environmental Research (CGER) at the National Institute for 

Environmental Studies (NIES) was established in October 1990. CGER’s main objectives are 
to contribute to the scientific understanding of global change and to identify solutions for 
pressing environmental problems. CGER conducts environmental research from 
interdisciplinary, multi-agency, and international perspectives, provides an intellectual 
infrastructure for research activities in the form of databases and a supercomputer system, and 
makes the data from its long-term monitoring of the global environment available to the 
public. 

CGER installed its first supercomputer system (NEC SX-3, Model 14) in March 1992.  
That system was subsequently upgraded to an NEC Model SX-4/32 in 1997 and an NEC 
Model SX-6 in 2002. In March 2007, we replaced the whole system with an NEC Model SX-
8R/128M16 in order to provide an increased capacity for speed and storage. We expect that 
our research will benefit directly from this upgrade. 

The supercomputer system is available for use by researchers from NIES and other 
research organizations and universities in Japan. The Supercomputer Steering Committee 
evaluates proposals of research requiring the use of the system. The committee consists of 
leading Japanese scientists in climate modeling, atmospheric chemistry, ocean environment, 
computer science, and other areas of concern in global environmental research.  

To promote the dissemination of the results, we publish both an Annual Report and 
occasional Monograph Reports. Annual Reports give the results for all research projects that 
have used the supercomputer system in a given year, while Monograph Reports present the 
integrated results of a particular research program.  

This volume of Monograph Report describes the main components of a modeling system 
that will be used for estimating regional fluxes of carbon dioxide from data obtained by the 
Greenhouse gases Observing SATellite (GOSAT) and ground-based instruments. The 
modeling system was developed using our supercomputer system. GOSAT, placed in orbit in 
January, 2009, is now regularly taking global measurements of carbon dioxide and methane. 
The data from space are expected to improve the accuracy of the current flux estimates. The 
result of the model calculation, which will be released from the NIES GOSAT Project, will 
help us gain better insight into the current trend of the global carbon budget.  

In the years to come, we will continue to support environmental research with our 
supercomputer resources and disseminate the outcomes. 

 
February 2010 

 

 
 
 

Yasuhiro Sasano 
Director 

 Center for Global Environmental Research 
National Institute for Environmental Studies 
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Preface 
 

The Greenhouse gases Observing SATellite (GOSAT) was successfully launched in 
January 2009 and has been collecting data since the completion of the initial check on the 
instruments onboard. It is the first high-resolution spectrometer in space designed to observe 
the atmospheric column abundances of carbon dioxide (CO2) and methane (CH4) over the 
glove. An inverse modeling system that utilizes the GOSAT observations for retrieving CO2 
regional fluxes is being developed and tested using the supercomputing facility available at 
NIES.  

This volume of the CGER’s Supercomputer Monograph Report is a collection of peer-
reviewed published papers that described the main components of the inverse modeling 
system. The system consists of tracer transport models for the ocean and atmosphere, process 
models of the carbon cycle in the terrestrial biosphere and ocean, and inventories of 
anthropogenic and natural CO2 fluxes. Also included in this volume, other than the 
descriptions of the components, is an analysis paper which evaluated the degree of 
contribution that the GOSAT data would make in improving the accuracy of surface CO2 
fluxes estimated monthly on a sub-continental scale. I hope that this issue of Monograph 
Report would be of a help in understanding how the regional fluxes of CO2 are calculated 
using the GOSAT data. On behalf of the members in our research group, I would like to thank 
those who are involved in maintaining the supercomputers here at NIES and making it 
available for our researches. 

 
February 2010 

 

 

Shamil Maksyutov 
Special Senior Researcher 

Center for Global Environmental Research,  
National Institute for Environmental Studies  
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Abstract 
 

We present description, validation, utilization, and update of the NIES/FRCGC (National 
Institute for Environmental Studies/Frontier Research Center for Global Change) off-line 
global atmospheric tracer transport model. The model transport is driven by analyzed 
meteorological fields and designed to simulate seasonal and diurnal cycles, synoptic 
variations, and spatial distributions of atmospheric chemical constituents in the troposphere. 
Tracer transport is simulated with semi-Lagrangian transport algorithm. The vertical mixing 
by the boundary layer turbulence and penetrative convection are parameterized. We have 
tested the model performance against observations of radon-222 and SF6. The long-lived 
tracer transport properties are also compared to the other models and observations using the 
simulation of atmospheric CO2. Our results suggest that the model can produce realistic 
interhemispheric exchange rate and vertical tracer distributions in lower and mid troposphere. 
A new version (NIES05) of the transport model has been developed for simulating diurnally 
varying CO2 concentrations at much finer horizontal resolution (0.25º×0.25º×47 levels). The 
high resolution model results show large improvements in match with the observations at a 
continental site in Tsukuba (~50km north-east of Tokyo). The NIES/FRCGC model is 
adopted to run on Earth Simulator for the purpose of source/sinks inversion of atmospheric 
CO2. We used interannually varying meteorology for the forward simulations of known CO2 
fluxes and normalized emissions from 64 divisions of the globe for which CO2 fluxes are 
determined by inverse modeling of atmospheric CO2. We have discussed the long-term trends 
and inter-annual variability in global and regional CO2 fluxes. The results suggest weak 
increases and reduction in total land/ocean and southern ocean sinks, respectively, for the 
period of 1982-2004. The estimated land flux variabilities have been explained by accounting 
ecosystem response to inter-annual climate variability and forest fires. 

 
Keywords: Forward transport model, High-resolution CO2 simulations, Inverse modeling 
of CO2, Sources and sinks 
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1.1 Introduction 
Atmospheric transport has to be accounted for when analyzing the relationships between 

observations of atmospheric constituents and their sources/sinks near the earth’s surface or 
through the chemical transformation in the atmosphere. The tracer transport modeling is done 
on different scales from local plume spread, regional mesoscale transport to global scale 
analysis, depending on scales of the phenomena. The global atmospheric tracer transport 
models are usually applied to studies of the global cycles of the long-lived atmospheric trace 
gases such as carbon dioxide (CO2) and methane (CH4), because the long-lived tracers exhibit 
observable global patterns (e.g. interhemispheric gradient of the concentration). Global 
modeling analysis has helped to identify the relative contribution of the land and oceans in 
Northern and Southern hemisphere to the interhemispheric concentration differences for CO2, 
CH4, carbon monoxide and other tracer species (e.g. Bolin and Keeling, 1963; Hein et al., 
1997). For the case of the stable and slowly reacting chemical species, a number of studies 
have derived information on the spatial and temporal distribution of the surface sources and 
sinks by applying transport model and atmospheric observations (e.g., Tans et al., 1990; 
Rayner et al., 1999).  

In this paper we present the development of a global atmospheric tracer transport model, 
its application for retrieving CO2 flux variability by time-dependent inversion (TDI), and 
finally recent updates for high resolution simulations using improved meteorology. Our main 
objective is to model the sub-grid scale physical process parameterizations tuned to recent 
observations, and at the same time trying to maintain flexibility to choose meteorological 
input, model resolution and other practical considerations. For atmospheric tracers with a life 
time longer than several months, an accurate simulation of interhemispheric transport rate 
appears to be important for global scale analysis, because it affects critically the results for 
regional or hemispheric breakdown of unknown fluxes, such as the terrestrial CO2 sink. 
Another important feature is a vertical profile of the tracer concentration over emitting 
regions, influenced by a rate of PBL mixing with free troposphere. Global tracer transport 
model intercomparison studies (e.g., Jacob et al., 1997; Law et al., 1996; Denning et al., 1999) 
demonstrated that the sizable difference in vertical mixing rates exists between models, and 
discrepancies between models and observations appear to be significant for the well 
established climate and transport models.  

 

1.2 Model description 
In this section, we describe our model design and numerical representation of the model 

processes, including the model equations, physical processes parameterizations and their 
numerical realizations. The development of NIES/FRCGC model reported here is to simulate 
the seasonal cycles of the long-lived tracer species at a relatively coarse grid resolution (2.5 to 
5 degrees longitude-latitude), and to perform sources/sinks inversion of atmospheric CO2. The 
transport model has been improved by increasing spatial resolution and driven by diurnal 
cycle resolving meteorology for simulating diurnal-synoptic scale variations (version: 
NIES05). Present model version evolved since early 1990s (Akimoto et al., 1993; Maksyutov, 
1994; Maksyutov and Inoue, 2000; Maksyutov et al., 2000). Several model algorithms and 
parameterizations tested in this process and were replaced or refined in order to produce more 
realistic simulation of the various atmospheric tracers. 

― 3 ―

CGER-I092-2010, CGER/NIES



Chapter 1 NIES/FRCGC global atmospheric tracer transport model: description, validation, and surface sources and sinks inversion 
 

4 
 

1.2.1 Model equations 

We use a terrain-following  vertical coordinate (Philips, 1957), which is defined by 
expression: spp / , where p and Sp  are atmospheric and surface pressures, respectively. 
Atmospheric constituent transport equation can be presented in the Lagrangian-style form 
(Williamson and Laprise, 2000): 

































RR

SFqq
t
q

dt
dq kk

k
k

kk

)cos(

V
  (1) 

Here kq  is the mixing ratio (volume) in dry air for tracer k, kF is the vertical flux due to 
turbulent diffusion and moist convective transport. kS  is a mixing ratio tendency due to 
surface fluxes and chemical transformations,   and   are longitude and latitude in radians, 
R  is the radius of the Earth, and V  the horizontal wind velocity vector with longitudinal and 
latitudinal components (u , v  ).   is vertical wind velocity in  -coordinate system ( =+ve 
indicates downward motion). Eqn. (1) is solved using single time-level, time splitting scheme, 
with separate consecutive steps for surface emissions and transformations, semi-Lagrangian 
transport, vertical mixing by penetrative convection (all explicit), and vertical diffusion by 
turbulence (implicit). The winds ( u , v ) are interpolated from the global analysis winds. 
Vertical subgrid-scale fluxes kF are obtained using parameterizations of the penetrative 
cumulus convection and PBL climatology. The vertical wind in sigma coordinates   is 
derived diagnostically from the global analysis winds. It is assumed that vertical velocity in 
global analysis   represents a mass flow through constant pressure surface, and is prepared 
using the equation (see Washington and Parkinson, 1986): 














 S
S

S p
t
p

p  V ,    (2) 

which includes effects of air motion with respect to constant sigma surfaces (as pressure and 
sigma planes are not parallel) and surface pressure tendency. The   is calculated from Eqn. 2 
according to 














 S
S

S p
t
p

p  V .  

   

1.2.2 Representation of the physical processes: cumulus convection 

The vertical redistribution of tracers by cumulus convection is based on cumulus mass-
fluxes calculated in a Kuo-type scheme following Grell et al. (1995), and modified to include 
entrainment and detrainment processes on convective updrafts and downdrafts proposed by 

Tiedtke (1989). In this formulation the cloud base level C  is obtained by adding small 
perturbation to humidity and temperature at levels below 700 hPa and adiabatically lifting the 

air parcel until the condensation occurs. For cloud base C  we use the lowest level where 
condensation would occur, known as lifting condensation level. The supply rate of moisture 
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available for penetrative convection is then estimated. The horizontal moisture divergence is 
evaluated from analysis winds and water vapor content (threshold at the cloud base is set to 
0.0002 kg/kg). Low-level moisture convergence 1M  is obtained by integrating the horizontal 
moisture convergence below cloud base level: 

  evapcS SMdqpM
C













 

1

1


 V .   (3) 

evapS  is surface evaporation. For evaporation climatology, we use monthly surface 
evaporation fields by NASA GEOS-1 reanalysis for 1992-1993 (Schubert et al., 1993). Use of 
the monthly evaporation rate for estimating the moisture divergence has been tested by 
Heimann (1995).  To account for deviation from the mass conservation in the wind data the 
moisture divergence term is corrected for non-zero divergence of the air mass cM : 

  
1

C

dpqM Sc


 V . 

The mass flux uM  in updraft is set to 1M  divided by water vapor mixing ratio at cloud 
base baseq , so that baseu qMM 1 . The vertical profiles of entrainment and detrainment rates 
are set proportional to uM in accordance with Tiedtke (1989). The cloud top is determined by 
comparing the virtual potential temperatures in the updraft and environment, for which an 
overshot of 3 degrees K is allowed. The clouds thinner than 1.0  are excluded. The 
downdraft mass flux is set to 0.2 of that in the updraft. The vertical distribution of zonal 
average cumulus mass flux on updrafts is presented in Figure 1.1, which clearly shows the 
location of the tropical convective cell moving along with the seasonal changes in solar 
insolation, from southern hemisphere in January to northern hemisphere in July. Also the 
overall seasonal features in mid-latitude convective zones are well captured. 

 
Figure 1.1 An example of zonal average convective mass fluxes for January and July as 
estimated by the model. 
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The tracers are transported vertically by applying a simplified explicit scheme. It is 
assumed that the updrafts and downdrafts make only a negligibly small part of a grid column; 
the rest is designated as environment air. First, the vertical profiles of the concentrations in 
the updraft and downdraft air are computed taking into account rates of mixing with 
environment air by entrainment and detrainment, and then the concentration tendencies in 
environment air are obtained from entrainment/detrainment rates.  

 

1.2.3 Representation of the physical processes: turbulent diffusion 

We used climatological planetary boundary layer (PBL) heights to separate transport 
processes in the well-mixed PBL and free troposphere. The monthly averages of daily 
maximum PBL thickness data are prepared from 3-hourly PBL height data at GEOS-1 
reanalysis dataset for 1992 - 1993 (Schubert et al., 1993). Daily maximum height is selected 
to representative time of trace gas observations. The summer-time PBL height over mid-
latitude continental areas varies around 150 hPa, approximately 1.5 km. The optimal 
procedure to derive the monthly PBL climatology can be debated. The other problem is a lack 
of day to day variability. To overcome this problem and perform more realistic simulation of 
diurnal cycle, newer version of the model (version: NIES05) uses diurnally varying PBL 
heights at three-hourly interval contained in the ECMWF analysis and forecast products. 

Below the PBL top, the turbulent diffusivity is set to a constant value of 40 m2/s. The 
large scale transport such as zonally-averaged vertical profiles of constituents does not change 
appreciably by decreasing the diffusivity to 20 m2/s. The selection of the turbulent diffusivity 
value inside the PBL seems to be not critical as far as vertical profiles in well-mixed daytime 
conditions are concerned (in the older version). Above the PBL top, the turbulent diffusivity 

TK  is calculated using a local stability function, as in Hack et al. (1993):  

)(2 RiFSlK ST  . 

Here, l  is a mixing length ( l  = 30 m). 
z

S




V  is a vertical wind shear. Ri  is a local 

Richardson number, defined with temperature and wind gradients as: 

zS
gRi V





ln
2 . 

V  is a virtual potential temperature, g is the acceleration of gravity. The stability dependent 
function )(RiFS is defined as: 

  2/1181)( RiRiFS   for unstable conditions ( 0Ri ) and 

C
S Ri

RiRiF  1)(  for stable conditions ( CRiRi 0 ),  

where 2.0CRi  is a critical Richardson number, above which 0)( RiFS . 
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1.2.4 Semi-Lagrangian transport and trajectory calculation 

Semi-Lagrangian transport algorithm is an effective way to solve the tracer transport 
problems in a polar coordinate system (Williamson and Rasch, 1989), as opposed to the 
regular-grid schemes formulated in flux form, that have a singularity near the poles caused by 
small grid size in longitudinal direction. In the semi-Lagrangian approach the tracer 
concentration change due to transport from initial state (time 0t ) to new value at next time 
step tt 0  is evaluated in 2 steps: 

Step 1 (Trajectory calculation): For the each grid point location a three-dimensional trajectory 
is calculated for an air parcel, which arrives to that grid point at time tt 0 . The trajectory 
location at time 0t  is designated as departure point, and the trajectory itself is called a back 
trajectory, because it is calculated backward in time.  

Step 2 (Interpolation): A concentration at departure point at time 0t  is obtained using 
interpolation from nearby grid point values. In the absence of mixing and transformation 
processes, concentration at arrival point should be exactly the same as that at the departure 
point, thus the tracer concentrations at new time step tt 0  are set to those at corresponding 
departure points. 

The trajectories are calculated using explicit integration of the air parcel motion in the 
Cartesian coordinate system originated in the Earth center. The coordinate transformation 
from polar to Cartesian coordinate system and back is used on the each time step. Calculation 
of the departure point on each time step is done in 3 sub-steps: 

a) Interpolate wind and pressure to the current air parcel position in polar coordinates, using 
bilinear approximations. 

b) Convert the winds and air parcel coordinates to Cartesian coordinate system centered at the 
Earth center, and calculate displacement tangent to Earth surface. 

c) Convert new position back to polar coordinate system and finding sigma level change by 
integrating vertical motion. 

We provide here a short description of the trajectory calculation equations (as referred in 
Step 1 above). The horizontal (parallel to Earth surface) air parcel movement is determined in 
the earth-centered coordinate system. The earth centered system has x–axis passing the point 
on the Earth surface at 0 East, 0 North; y-axis passes via 90E, 0N, z-axis passing via 90 
North. Horizontal motion in polar coordinates ( , ) can be represented as 

v
dt
dRu

dt
dR 

 ,)cos( .  

The air parcel displacement in the earth-centered system is given by   

)cos(
)cos()cos()sin(
)sin()cos()sin(









dz
dy
dx

, 

where dx, dy, dz are air parcel displacements in x, y, z directions in the earth-centered 
coordinate system.   and    are displacements in longitude, latitude directions, calculated 
as: 

― 7 ―

CGER-I092-2010, CGER/NIES



Chapter 1 NIES/FRCGC global atmospheric tracer transport model: description, validation, and surface sources and sinks inversion 
 

8 
 

tRvtvtRutu  )/(,)cos/(  . 

Here, t  is a time step (negative for back-trajectory). A new position of the air parcel is given 
by  

dzRz
dyRy
dxRx





)sin(
)sin()cos(
)cos()cos(





. 

x, y, z are longitudinal, latitudinal, and vertical positions of the air parcel. R is the radius of the 
Earth. After the position in the earth-centered coordinate system is determined, the position in 
the polar coordinate system is given by:  

)/arctan()/arctan( 22 xyyxz   . 

This trajectory calculation module has been extensively used for analysis of the 
relationship between the atmospheric transport and observed time series of the long-lived 
tracers such as nitrous oxide (Tohjima et al., 2000), methane (Tohjima et al., 2002) and ozone 
(Pochanart et al., 2001). The studies where performed with the same wind and trajectory 
calculation algorithm as in the present three-dimentional transport model, and a good 
correlation was observed between the variations of the atmospheric composition and 
trajectory pathways over a time periods extending from 1994 to 1999. Those results give us 
some degree of confidence in the model’s horizontal transport performance. 

 

1.2.5 Model grid 

The model’s horizontal and vertical resolutions match those of the meteorological dataset 
when possible. We use pressure level ECMWF operational analyses at 12-hour time step and 
2.5 degree horizontal resolution in our model validation experiments, and NCEP reanalysis 
data at the same resolution for multiyear inverse model simulations (ECMWF, 1999; Courtier 
et al., 1998). The same horizontal resolution is used in the model; however, the grid layout is 
different from the meteorological dataset. The first model grid cell on a horizontal plane is 
located near South Pole, and is confined between (0 E, 90 S) and (2.5 E, 87.5 S). The last 
one, at North Pole, is confined between (357.5 E, 87.5 N) and (0 E, 90 N). Vertical grid 
layout was designed to provide enough layers to match the resolution of the wind dataset 
(ECMWF operational analyses), and the variability in the boundary layer height. The 
validation tests were performed with 15-layer vertical grids, which have slab centers at Kσ = 
{.97, .93, .89, .85, .775, .7, .6, .5, .4, .3, .25, .2, .15, .1, 0.03}. The slab interfaces are at mid 
levels 2121 )/σ(σσ KK/K   . The model grid is staggered in the vertical dimension. Turbulent 
diffusivities and convective mass fluxes are assigned to slab interfaces 2/1Kσ , while the winds, 
temperature, and humidity are assigned to slab centers Kσ . The winds are interpolated from 
the meteorological analysis grid to the model grid using bilinear interpolation in longitudinal, 
latitudinal, and vertical directions.  

The NIES05 model version uses the NCEP operational meteorological analysis data 
having 26 vertical levels and 1×1 degree horizontal resolution and provided at a six-hour 
interval. The NIES05 model simulations are performed at various horizontal resolutions, e.g., 
0.5×0.5, 1×1, and 2×2 degrees. This version has 47 vertical layers. 
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1.2.6 Mass fixer description 

The total tracer mass tendency by the semi-Lagrangian transport algorithm usually 
deviates from zero, which is often negligible in short term but can disturb the global trends 
and tracer budgets in long-term simulations. A variety of mass fixers are applied in transport 
models in order to keep total tracer mass unchanged during transport (Hack et al., 1993; 
Rasch et al., 1995). We distribute the required correction proportionally to local advection 
tendencies as described in Taguchi (1996). The mass fixer is designed to conserve as total 
tracer mass, which is calculated as an integral (with constant factor omitted): 

     



1

0

1

1

2

0

sin61.01


 dddqqpM WSq   (4) 

Here Wq  is a water vapour mixing ratio, so  Wq 61.01  is a dry air mass fraction. Mass 
fixer is designed to conserve qM  by balancing the positive and negative tendencies. The 
constraint for tracer tendencies on each time step is derived from the mass balance equation 
(Eqn. 4) as follows 

        









 






 1

0

1

1

2

0

0sin61.01~61.01


 dddqp
t

qqqpM
t WSWSq  . 

Here q~  is a corrected tendency for each tracer. We apply two different factors, pa and na , as 
multipliers for positive and negative tendencies and obtain  

    qaqaqq np   ~ , 

where q  is a tracer tendency from semi-Lagrangian transport step,  q  is a step function 
(   1x  for 0x , and   0x  for 0x ). The condition   1,max np aa is enforced to 
keep the solution monotonic. 

Recent tests conducted for TransCom 3 intercomparison experiment (Gurney et al., 2002) 
revealed that the mass fixer we use does have a detectable non-local (“teleconnection”) effect. 
It is caused by the values of pa and na being slightly different for each particular tracer. The 
values of pa and na influence the rate of interhemispheric transport, and the difference is 
generally larger than that for other mass fixers (R. Law, personal communication, 2001), such 
as flat concentration adjustment (Hack et al., 1993). 

 

1.2.7 Treatment of the surface emission-sink fields and chemical transformations 

The model is designed to handle constant surface emission fields and seasonally changing 
emissions in the form of 12 monthly average fields per year. The NIES05 version can ingest 
fluxes at higher frequency, at up to hourly time interval. The monthly average emissions are 
interpolated linearly to daily values, and on the 15th of each month the emission rate is equal 
to the monthly average for that month as provided by emission inventory files. The emission 
inventory fields have higher resolution (e.g., 1×1 degree), than the model grid (e.g., 2.5×2.5 
degrees), so the input dataset is mapped to a model grid by counting the overlap area of each 
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input data cell to all model grid data cells. That assures that the global total emission flux is 
conserved during interpolation.  

 

1.3 Validation of NIES/FRCGC global transport model 
An effective way to validate the atmospheric transport models is by simulating the non-

reacting or slowly reacting atmospheric tracer species with well-known emissions and 
transformations. The tracers of choice are both short-lived species like radon-222 for 
diagnosing local/regional transport (Jacob et al., 1997) and long-lived species for evaluating 
large scale/interhemispheric transport such as SF6 (Denning et al., 1996; Levin and 
Hesshaimer, 1996; Maiss et al., 1996), 85Kr (Jacob et al., 1987; Heimann and Keeling, 1989; 
Zimmermann et al., 1989), and chlorofluorocarbons (Prather et al., 1987; Mahowald et al., 
1997). General requirements to the suitable tracer species can be summarized as follows: a) 
availability of reliable emission inventory; b) stable emissions with little seasonal and diurnal 
variations; c) availability of the observations at required temporal and spatial scales. Most of 
naturally emitted gaseous species like carbon dioxide, methane, and carbon monoxide can not 
be used for the model validation because of the large and poorly known spatial-temporal 
variability of their sources and sinks. Among the most widely used are the gases of the 
anthropogenic origin – SF6 and chlorofluorocarbons, because their emission rates are 
constrained by both the industrial statistics and the trends in global atmospheric content and in 
addition have no known chemical loss in the troposphere. On the other hand radon-222 
(atmospheric residence time of 3.8 days) is emitted only naturally, but its emission rate is 
related to stable factors, such as type of soil and rocks, rather than the changing vegetation or 
weather conditions. 

We evaluate the model’s overall performance using results from several extensively- 
tested global tracer transport models and comparing our model simulations with observations. 
Those model simulations include the WCRP model intercomparison experiment for radon 
(Jacob et al., 1997), TransCom experiment (Law et al., 1996) for CO2 transport 
intercomparison, and SF6 transport intercomparison experiment TransCom 2 (Denning et al., 
1996). These modeling setups were developed by large transport modeling community, and 
provide concise and tested sets of atmospheric observations and surface emission fields. This 
gives us an opportunity to concentrate on limited number of key and integral simulated tracer 
field parameters. The limited set of tests may not actually substitute running the 
comprehensive validation using large variety of observations (e.g., Dentener et al., 1999), but 
can still give valuable information on the model performance in terms of large scale averages. 

 

1.3.1 Evaluation of vertical transport using simulation of radon 

Radon-222 is a product of radium-226 decay and has a lifetime of 3.8 days in the 
atmosphere. The surface radon emission rate varies considerably from 0.5 to 2 atoms/cm2/s; 
the emission is suppressed by poorly conducting wet soils and snow cover. Yet there is no 
better choice of relatively short-lived and widely observed tracer for validating a transport 
model for continental and remote oceanic atmosphere, and between boundary layer and free 
troposphere. For validating the model performance using transport of radon-222, we follow 
the World Climate Research Program (WCRP) inter-comparison experiment specification 
(Jacob et al., 1997). Radon-222 surface fluxes were set to 0.005 atoms/cm2/s for oceans and 1 
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atom/cm2/s over land between 60 S to 60 N, and to 0.005 atoms/cm2/s for land between 60 
N to 70 N.  

The observed and simulated radon concentrations for different heights at Crozet, Hawaii 
and Cincinnati are compared (not shown) by using the data at Cincinnati (Gold et al., 1964), 
Crozet (Lambert et al., 1995), and Hawaii (Kritz et al., 1990). The model appears to under-
predict surface concentrations at Cincinnati and upper atmospheric observations over Hawaii 
(200 hPa level), and slightly over-predict the observations at Crozet island. Worth mentioning, 
however, that several models that participated in Jacob et al. (1997) inter-comparison also 
failed to capture observed variability in the upper troposphere and reproduce the high radon 
observed values at 200 hPa over Hawaii. Crozet Island is located south of African coast; the 
data indicate low background concentrations of below 10-21 mol/mol, with infrequent high 
radon episodes lasting few days. In case of Crozet, Jacob et al. (1997) found that the low 
background concentrations are over-predicted; but the amplitude of the high radon episodes is 
captured more successfully by the “established” transport models, which is believed to be an 
indication of models’ ability to transport radon to remote atmosphere without significant 
amplitude loss due to diffusion. The summer maximum at Crozet in our model is within the 
range of the observed variability.  

 
Figure 1.2 Comparisons between observations and model simulations of radon-222 averaged for 
3 continental sites during winter and summer. Results at three vertical levels (surface, 600 mb and 
300 mb) are shown. Models A to J are established three-dimensional models, models k to q are three-
dimensional models under development, R to U are two-dimensional models, and Y is for this model. 
Observations are taken at Cincinnati (40oN, 84oW), Socorro (34oN, 107oW) and Kirov (58oN, 49oE). 
Different model results are designated by letters along the x-axis: A. CCM2, B. ECHAM3, C. 
GFDL/ZODIAC, D. GISS/H/I, E. KNMI/TM2, F. LLNL/GRANTOUR, G. LLNL/E, H. LMD, I. 
TM2Z, J. MOGUNTIA, k. CCC-GCM, m. LaRC, n. LLNL/IMPACT, o. MRI, p. TOMCAT, q. 
UGAMP, R. AER, S. UCAMB, T. HARWELL, u. UW, Y. NIES/FRCGC (this work). 
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Figure 1.2 shows the comparison of winter and summer averages together with other 
model results as presented by Jacob et al. (1997). The comparison to the observations 
concludes that our model performs similarly to the established three-dimensional transport 
models (see Figure 1.2 caption for details), and the model simulated vertical profiles are close 
to observed ones. The model results are within the range of observations (widened by 
observed variability) for all but summer mixed layer value. Even in the later case it is close to 
lower bound of the observation ranges. This may indicate that the summer time mixing 
(ventilation of the boundary layer) is stronger than that occur in the real world. The same 
conclusion is also applicable to some other transport models as well (see Figure 1.2). 
However, this low value is not conclusive evidence in the view of the fact that the local 
emission rate uncertainty could be as high as 50%.  

 

1.3.2 Evaluation of interhemispheric transport using long-lived gases 

The validation of the inter-hemispheric and vertical transport became more reliable with 
the increasing availability of the observational data on a stable tracer, SF6, which can be 
analyzed accurately in the laboratory after sampling to flasks, has a long atmospheric lifetime 
of more than 3000 years (Ravishankara et al., 1993), has steady emissions, verifiable via 
global atmospheric abundance observations (Levin and Hesshaimer, 1996; Geller et al., 1997). 
We follow the TransCom 2 protocol (Denning et al., 1999) in applying the global emission 
scenario for SF6, and present the 5-year simulation that starts from globally homogeneous 
concentration of 2 pptv (parts per trillion volume) at the beginning of 1989. In Denning et al. 
(1999) intercomparison the initial value was set to 2.06 pptv, and that resulted some 
overestimation of the global 1993 average by all models. They had to scale down the 
concentration increase by a factor of 0.936, which may be interpreted as the same amount of 
decrease in emission rate considering linearity in SF6 transport.  

The annual average of simulated SF6 concentration for 1993 is compared to the 
observations compiled by Denning et al. (1999) and plotted in Figure 1.3. The common 
problems that can be observed with both our model and models reported by Denning et al. 
(1999), are large mismatch for Barbados (13oN, 59oW), and large variability in mismatch for 
continental and background Northern hemispheric background locations. The pole-to-pole 
difference (South Pole to Alert) is captured fairly well by our model. Similar simulations of 
fossil fuel component of CO2 flux are also conducted. We estimate an interhemispheric 
exchange time of about 1.5 year and 0.9 year by considering the hemispheric means of surface 
concentrations and values integrated for the whole hemisphere, respectively. 
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Figure 1.3 Interhemispheric gradients in modeled and observed SF6 concentrations during 1993 
are depicted. The modeling set up for this simulation is similar to TransCom 2 experiment (see text). 

 

According to the data presented, the model in a given configuration tends to under-predict 
inter-hemispheric gradient in background locations by 10% of interhemispheric difference 
(taken as 0.4 pptv), but at the continental sites the difference can be both positive and negative. 
The average mismatch is comparable to that by other established transport models in 
TransCom 2 intercomparison, but indicates that there are scopes for further improvements in 
forward modeling as well as the spatial distribution of SF6 emission. The wish list for those 
improvements would include: a) increasing the interhemispheric gradient in background 
atmosphere by extra 10% to improve the match between model and observations at 
background locations, and b) at the same time keep the match at continental locations within 
present level. The later action would require enhancing the vertical mixing in lower 
troposphere potentially leading to widening the mismatch with radon-222 data as in Figure 
1.2. Some of these improvements are introduced in the NIES05 version of the model and 
some results have been discussed later. 

 

1.3.3 CO2 transport simulation with TransCom 1 experimental protocol 

Another test of the model performance is given by the TransCom 1 intercomparison study, 
which provides the handy set of parameters for evaluating both the horizontal 
(interhemispheric) and vertical tracer transport by comparison with the established models. 
Here we report the simulation results for “fossil fuel CO2” tracer, as specified by Law et al. 
(1996). The fossil fuel CO2 source field derived by Inez Fung is the same as in Tans et al. 
(1990), and is based on CO2 emission inventory by Marland (1989). The results are presented 
as averages for North and South Hemispheres for surface level, 500 hPa, and 200 hPa levels. 
The interhemispheric concentration gradient defined as difference in hemispheric averages 
simulated by our model and models reported by Law et al. (1996) are summarized in Figure 
1.4. According to previous studies with short/long-lived tracers, such as Jacob et al. (1987), 
Denning et al. (1999), the extensively validated models such as GISS and TM2 are capable of 
reproducing the interhemispheric gradient of the long-lived tracers with the accuracy of about 
10% or better. We use the same yard-stick for evaluating the performance of our model. 
NIES/FRCGC model is not considerably different from TM2 in terms of the North-South 
difference at surface. Along with several other global tracer transport models it predicts about 
3-ppm difference at surface, however there is a difference in vertical profile of 
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interhemispheric gradient. At the level of 500 hPa, the relative difference between models 
becomes larger with TM2 and GISS showing larger interhemispheric difference as compared 
to others. At 500 hPa our model also produces larger gradient than other models, and 
difference from TM2 is minor. That is not the case at 200 hPa level. As one can see on Figure 
1.4, the North-South difference at 200 hPa is as large as 1.5 ppm for GISS and TM2, and 
about 1 ppm or less for our and other models. Main reason is a stronger vertical transport in 
GISS and TM2 models, which also makes smaller the model simulated difference between 
continental boundary layer and background oceanic air, as discussed in Law et al. (1996) and 
Denning et al. (1999).  

 
Figure 1.4 Interhemispheric gradients in fossil fuel CO2 tracer simulated by TransCom 1 models 
and NIES/FRCGC model are shown for three vertical levels. 

 

1.4 Introduction to high resolution model version (NIES05) 
While the NIES/FRCGC model successfully captures overall features in tracer transport 

and being used for CO2 sources/sinks estimation by inverse modeling of atmospheric CO2 
(section 1.5), there are increasing demands for simulating tracer distributions at sub-daily time 
and local scales. Presently about 30 stations are observing atmospheric CO2 using in situ 
deployed instruments and provide hourly average values for scientific research (WDCGG, 
2007). To understand the observed variability, the transport model simulations are required to 
be performed at increased spatial resolution and driven by diurnally varying meteorology. We 
have run our transport model (version NIES05) as high horizontal resolution as 0.25×0.25 
degree longitude-latitude, in order to investigate the impact of grid resolution on global CO2 
transportation. Here, we present our simulation results at 4 kinds of horizontal resolutions; 
2×2, 1×1, 0.5×0.5 and 0.25×0.25 degrees. The vertical resolution is enhanced to 47 levels for 
better resolving the mixing processes in the boundary layer. For resolving the diurnal 
variations in surface concentrations, the NIES05 model version is driven by 3-hourly PBL 
height data from ECMWF analyzed and forecast products (http://www.ecmwf.int; 
path:/products/data/operational_system). The other 2-D and 3-D meteorological parameters, 
e.g., sea-level pressure, winds, temperature, are taken from NCEP final analysis 
(http://dss.ucar.edu; path:/datasets/ds083.2/). Computational demand increased many-fold to 
run the model at 0.5×0.5 degree horizontal resolution and 47 vertical level; e.g., time and 
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memory size required for one month simulation of 3 tracers are 1.4 hours in real time and 4.4 
GB, respectively on 6 CPUs of Earth Simulator (NEC SX-6 series processor).  

Three surface CO2 fluxes are used; SiB2 hourly varying terrestrial ecosystem flux 
(Denning et al., 1996), seasonally varying ocean flux (Takahashi et al., 2002) and 
anthropogenic fossil fuel emissions (Marland, 1989) following the TransCom continuous 
experiment protocol (Law et al., 2006). Higher resolution anthropogenic CO2 emission 
distributions are generated from 1×1 degree emission inventory, by redistributing the fluxes 
spatially following the 2.5min global population map data (CIESIN, 2000), and combined 
with lower resolution ecosystem and oceanic flux data. This redistribution procedure for fossil 
fuel emission is an approximation and should ideally be placed according to the source 
locations. The summation of those fluxes is considered as the total CO2 surface flux. August 
2002 is selected as the target period of our test simulation. The preceding simulation (spin-up 
run) is performed at 2×2 degree horizontal resolution for the period of 1st January to 31st July, 
2002 in order to obtain realistic spatial CO2 gradients. Figure 1.5 shows the snapshots of 
surface CO2 distributions over East Asia at the resolutions of (a) 2×2 and (b) 0.25×0.25 
degree. Though the area-averages concentrations are similar in both cases, the distribution 
patterns are quite different from each other. For example, Figure 1.5b shows much clearer city 
plumes than Figure 1.5a. It also shows clearer vortex shape due to a typhoon near the Kyusyu 
area (130oE, 30oN).  
  

      
Figure 1.5 Surface CO2 concentrations at 03Z30AUG 2002 obtained from (a) 2×2 degrees (left) 
and (b) 0.25×0.25 degree (right) horizontal resolution simulation. 

 

Figure 1.6 shows a comparison of atmospheric CO2 data at Tsukuba 200 m tall tower with 
NIES05 model results at different horizontal resolutions. Tsukuba is located close to a large 
anthropogenic CO2 emission region around Tokyo (distance ~50 km). The observation data 
are provided by Y. Sawa and H. Matsueda of Meteorological Research Institute (MRI), 
Tsukuba (also available at WDCGG website). Each simulation result has its offset value, 
which is determined from the average value in the August. The higher-resolution simulations 
have stronger diurnal changes, which are more consistent with observed diurnal cycle. 
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Furthermore, they produce better predictions, particularly during the 3rd to 7th August period 
when winds from Tokyo dominate. Model simulations at horizontal resolution of 1×1 degree 
or coarser do not resolve the separation between Tokyo and Tsukuba emissions and transport 
as Tokyo and Tsukuba reside within the same grid cell and sampling grid do not accurately 
represents Tsukuba (see Figure 1.6 caption). The nearest north-eastern model grid is selected 
for sampling, and the distance between model grids and Tsukuba are estimated to be about 
128, 58, 23 and 8 km for 2×2o, 1×1o, 0.5×0.5o and 0.25×0.25o horizontal resolutions, 
respectively. Thus the highest resolution run enables us to capture the CO2 variabilities more 
realistically compared to the coarse resolution runs. 
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Figure 1.6 Results of NIES05 at four kinds of resolutions at Tsukuba (36.05oN, 140.13oE) 200 m 
high tower, which is in close proximity of megacity Tokyo (35.66oN, 139.75oE), and is 
occasionally under the influence of strong anthropogenic sources (an episode of up to about 70 
ppm on 5th afternoon). An offset of 373 ppm is added to the model values for comparison with 
observations. The model sampling grids are located at (37oN, 141oE), (36.5oN, 140.5oE), (36.25oN, 
140.25oE) and (36.13oN, 140.13oE) in 2×2o, 1×1o, 0.5×0.5o and 0.25×0.25o model resolutions, 
respectively. 

 

The simulations of CO2, radon-222 and SF6 at hourly, daily and synoptic time scales are 
being evaluated under the TransCom continuous intercomparison project (Law et al., 2006). 
Though the first forward simulation results are encouraging this model version will not be 
used in surface CO2 sources/sinks inversion for resolving flux variabilities at high spatial and 
temporal resolutions, until a rigorous evaluation of model simulations of the above mentioned 
species is completed. 

 

1.5 Inverse modeling of CO2 sources and sinks  
Using the NIES/FRCGC model version (2.5 × 2.5 horizontal resolution and 17 vertical 

layers) we have employed a 64-region time-dependent inverse model (TDIM) for deriving 
CO2 fluxes at monthly time interval from atmospheric CO2 data at 87 stations. Our 64-region 
TDIM is based on that has been used in Rayner et al. (1999) and partially follows the 
TransCom3 protocol (Gurney et al., 2000). The results have been widely reported by 
analyzing inter-annual variability in fluxes (Patra et al., 2005a; 2005b), and for understanding 
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the anomalous CO2 growth rate at Mauna Loa during 2001-2003 (Patra et al., 2005c). Fluxes 
for oceanic regions have been validated in comparison with independent oceanic-pCO2 
inversion and explored for mechanistic understanding of the flux variabilities using 
biogeochemical models of land and ocean (Patra et al., 2006b; 2007). Here we will present 
some recent developments that support the derived flux variabilities and trends by our TDIM 
setup. In addition, NIES/FRCGC model has been utilized exclusively for optimization of 
futuristic surface observation networks and to study utility of satellite measurements in 
surface sources/sinks estimation. Most of these studies are conducted using synthetic data 
experiments in time-independent inversion mode for 22, 42 or 432 region divisions of the 
globe (Maksyutov et al., 2003a; 2003b; Patra et al., 2002; 2003a; 2003b). Multi-model 
intercomparisons of time-independent and time-dependent CO2 flux inversions are done under 
the TransCom3 project (Gurney et al., 2002; 2003; 2004; Law et al., 2003; Baker et al., 2006; 
Patra et al., 2006a). The inverted fluxes corresponding to NIES/FRCGC model are found to 
be similar to most other 12 or 16 participating models. 
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Figure 1.7 Long-term trends and inter-annual variability in global and regional in CO2 fluxes as 
derived by 64-region TDI model are depicted for the period 1979-2005. The NIES/FRCGC model 
is used for forward transport simulations and atmospheric CO2 data are taken from three different 
observation networks consisting of 87, 67 and 19 stations. Linear fits to the fluxes using 19 stations 
network are shown as straight lines (panels A and B: orange line, Panel C: green and orange lines for 
1979-2005 and 1982-2005 periods, respectively, Panel D: green and orange lines for southern and 
northern SO parts, respectively). In Panel D, absolute fluxes for two SO regions as in the TDIM are 
shown: thick and thin lines are for northern and southern parts, respectively. Note all other panels 
show flux anomalies. The shaded curves are for El Niño Southern Oscillation (ENSO; source: 
www.cdc.noaa.gov) and Antarctic Oscillation (AAO; source: www.cpc.ncep.noaa.gov) indices. 

 

Figure 1.7 shows the TDIM estimated fluxes for the period 1979-2005 using 
NIES/FRCGC forward model simulations driven by interannually varying winds (TDI/64-
IAV), and cyclostationary winds and CO2 measurements at 67 stations (TDI/64-CYC/67) and 
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19 stations (TDI/64-CYC/19). Use of cyclostationary winds and smaller CO2 data network 
significantly reduces the interannual variability in TDIM derived CO2 fluxes for both the land 
and ocean regions (see Patra et al., 2006b for a discussion). However, the trends in fluxes are 
fairly independent of the forward model transport. Total land and ocean sinks appear to be 
increasing over the 1980-2005 periods (Figure 1.7a and b) though the inter-annual variability 
has large influence on the trends derived, i.e., selection of period for trends estimation has 
measureable impact on the value itself. Similar is the situation for regional flux trends. 
Recently, trends in CO2 exchange over the Southern Ocean (SO) have drawn considerable 
attention (see Le Quéré et al., 2007 and references therein). Their analysis also use results 
from an atmospheric CO2 inversion that employs independent technique and derives fluxes at 
forward model grid resolution (Rödenbeck, 2005). Our model results also suggest a decrease 
in SO CO2 sink in the past 2.5 decades but the magnitude of net decrease can be debated and 
vary between 0.04-0.1 Pg-C/decade depending on period of the fits, and appears to follow the 
trends in AAO (Figure 1.7c). More detailed look in to the fluxes corresponding to northern 
(40-60oS) and southern (60-80oS) parts of SO suggests that the former region tending to 
become a weaker sink of CO2 (Figure 1.7d), where the biological uptake is prominent. In 
contrast, the net release from southern part indicates a decrease over our analysis period 
where the sea-air CO2 exchange is believed to be controlled by coastal upwelling. 

Greater flux anomalies estimated using 64-region inverse model and observations at 87-
stations have generated curiosity in the scientific community (e.g., McKinley et al., 2006). 
The flux variability for total land and ocean show good correspondence with ENSO cycle and 
vary in opposite phase with each other (Figure 1.7a and b). The amplitude and phase 
correspondence weakens for total ocean flux variability if atmospheric CO2 data at smaller 
number of sites is used in TDIM calculation, and amplitude of total land flux variability 
reduces although the phase remains fairly similar. Comparison of TDI/64-IAV derived flux 
anomalies with the estimates based on observations have been done for some of the ocean 
regions (Patra et al., 2005a). Both approaches result in similar magnitudes in flux anomalies 
for Equatorial Pacific, North Atlantic and North Pacific. Using an ocean biogeochemical 
elemental cycling model, sensitivity studies indicate flux anomalies to changes in nutrient 
supply through dust deposition from the atmosphere can partly explain the TDI/64-IAV 
derived CO2 flux anomalies (see Patra et al., 2007 for details). The full range of IAVs for the 
ocean regions are encompassed by the sensitivity runs selected in that analysis when the dust-
iron input is varied by ten times or one-tenth.  
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Figure 1.8 The inverse modeling results for selected land regions. Biome-BGC + GFED2 fire 
match with TDI fluxes (observation network of 87 stations case). 

 

For the land regions, analysis using a simulation setup of Biome-BGC terrestrial 
ecosystem model underestimated the TDI estimated flux variability (Patra et al., 2005b), and 
they attributed the mismatch between the two to the lack biomass burning processes in 
Biome-BGC model. Reliable estimates of monthly-mean CO2 fluxes due to fires (referred to 
as fire CO2 flux) for several years have now been produced based on satellite derived burned 
area estimates, CASA terrestrial ecosystem model based fuel load inventories and known 
emission factors (van der Werf et al., 2006; version GFED2). Figure 1.8 shows a comparison 
of Biome-BGC net ecosystem exchange (NEE) and fire CO2 flux (bottom-up estimate) with 
that estimated by TDI/64-IAV (top-down). For most of the years, the bottom-up and top-
down estimates agree very well (difference within 10%), with the exception of Boreal Asia 
region for the period 1999-2000 only. This comparison further enhances our confidence in the 
derived flux IAV in the TDI/64-IAV inversion. 

 

1.6 Conclusions 
Our “off-line” global atmospheric tracer transport model features a blend of established 

and newer approaches to representing the physical processes in the atmosphere important for 
atmospheric tracer transport. The semi-Lagrangian transport algorithm is combined with 
climatological PBL scheme and penetrative cloud convection parameterization to give a 
model capable of simulating the variations of the atmospheric tracers at a monthly and longer 
time scales. The chosen combination of the parameterizations proved to be effective in 
reproducing observed vertical and horizontal distributions of the passive atmospheric 
constituents with accuracy similar to those of the established atmospheric transport models. 
Test problems suite included transport of radon-222 as in WCRP transport model 
intercomparison experiment, sulfur hexafluoride (SF6) following TransCom 2 model 
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intercomparison, and CO2 as in TransCom 1 intercomparison experiments. Vertical profiles of 
radon-222 are simulated successfully except for some possible underestimation of the surface 
concentrations in summer. The simulations of the long-lived tracers SF6 and CO2 
demonstrated satisfactory performance in the interhemispheric transport. Strength of 
interhemispheric gradient in tracer transport is important for realistic estimation of 
sources/sinks estimation using inverse modeling of atmospheric CO2 and satisfactory results 
are obtained for annual and monthly mean flux inversions. We have reviewed the CO2 
sources/sinks inversion results using a 64-region time-dependent inverse model using 
atmospheric CO2 data and NIES/FRCGC transport model driven by interannually varying 
meteorology. Some recent developments in capturing the inter-annual variations in CO2 
fluxes and short-term trends are discussed. Our model results are supported by other 
independent estimates. Further tests and improvements in the forward transport model design 
are achieved for better simulation of day-to-day and diurnal variability in the tracer 
concentrations. The newer model version (NIES05) uses diurnally varying PBL (3-hour 
interval), and 6-hourly pressure level meteorological parameters (U, V, T etc.). This model is 
run at one of the finest horizontal resolutions (0.25o×0.25o) globally and 47 layers. The finest 
-resolution simulation shows remarkable improvements for matching the observations from a 
tower near to the megacity Tokyo.  
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Abstract 
 

An inverse of a combination of atmospheric transport and flux models was used to 
optimize the Carnegie-Ames-Stanford Approach (CASA) terrestrial ecosystem model 
properties such as light use efficiency and temperature dependence of the heterotrophic 
respiration separately for each vegetation type. The method employed in the present study is 
based on minimizing the differences between the simulated and observed seasonal cycles of 
CO2 concentrations. In order to compensate for possible vertical mixing biases in a transport 
model we use airborne observations of CO2 vertical profile aggregated to a partial column 
instead of surface observations used predominantly in other parameter optimization studies. 
Effect of the vertical mixing on optimized net ecosystem production (NEP) was evaluated by 
carrying out 2 sets of inverse calculations: one with partial-column concentration data from 
15 locations and another with near-surface CO2 concentration data from the same locations. 
We confirmed that the simulated growing season net flux (GSNF) and net primary 
productivity (NPP) are about 14% higher for northern extra-tropical land when optimized 
with partial column data as compared to the case with near-surface data. 

 
Keywords: CO2 flux optimization, Net ecosystem production, Net primary production, 
CASA model 
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2.1 Introduction 
Accurate estimation of the global distribution of CO2 flux is important not only for 

making a basis for imposing the emission restriction of CO2 gases on each country under 
international agreement, but also for understanding both natural and anthropogenic processes 
controlling the CO2 fluxes. One common approach for estimation of CO2 flux is to use 
atmospheric transport inversions (Gurney et al., 2002; Rödenbeck et al., 2003). With 
increasing number of CO2 observation data becoming available recently, the use of 
atmospheric transport inversion will produce more reliable results (Maksyutov et al., 2003). 
Equally important in increasing the reliability of the atmospheric transport inversions is to 
increase the reliability of the background CO2 fluxes that are used to derive the a-priori values 
of CO2 concentration fields for solving the inverse problems.  

Fluxes of CO2 due to net ecosystem production (NEP) of terrestrial ecosystem, fossil fuel  
combustions, biomass burning, and exchange with ocean are major contributors to the 
seasonal cycle of CO2 in atmosphere. Among all of these fluxes, NEP makes the largest 
contribution to variability in CO2 in the atmosphere although it is very close to neutral over 
the course of a year (Tucker et al., 1986). To better understand the carbon cycle in the 
terrestrial ecosystem, several models have been developed to date. For example, Potsdam 
Model Intercomparison study compared a total of 17 global terrestrial biogeochemistry 
models, and analyzed these models from several aspects such as the simulated net primary 
productivities (NPP), using the common input data (Cramer et al., 1999).  

Methods to optimize terrestrial ecosystem models with atmospheric CO2 seasonal cycle 
vary from a model to model. One way is to adjust the model parameters one by one until a 
simulated physical quantity is close enough to the observed value. On the other hand, 
statistical approaches are commonly used to adjust model parameters. Fung et al. (1987) 
optimized temperature sensitivity of the ecosystem respiration globally to get a better fit of 
the simulated northern hemispheric CO2 seasonality to the observations, and achieved quite 
reasonable results for the amplitude of seasonal cycle although with some problems in the 
phase. Later, Randerson et al. (2002) simultaneously optimized parameters of the Carnegie-
Ames-Stanford Approach (CASA) terrestrial ecosystem model by incrementally varying the 
values of two parameters and constructing a three-dimensional plot of a cost function 
describing the weighted difference between modeled and observed CO2 concentrations.  In 
their study, they used the Goddard Institute for Space Studies tracer transport model to 
simulate the atmospheric CO2 concentrations from CASA fluxes with different values of 
parameters (Randerson et al., 2002). Kaminski et al. (2002) simultaneously optimized 24 
parameters of the Simple Diagnostic Biosphere Model (SDBM) by assimilating seasonal 
cycles of CO2 concentrations from 41 observing sites. Further, Rayner et al. (2005) elaborated 
on the carbon cycle data assimilation system developed by Kaminski et al. (2002) and 
simultaneously optimized 57 parameters of Biosphere Energy Transfer Hydrology Scheme 
(BETHY) using the observed data of CO2 for 1979 to 1999.  

To our knowledge, these studies which used the observed CO2 concentrations to optimize 
parameters of terrestrial ecosystem model relied upon available CO2 data which are 
dominated by surface level measurements. However, more recent studies have revealed that 
the vertical mixing biases in transport models result in bias in the optimized fluxes. For 
example, Stephens et al. (2007) revealed that a number of transport models compared in the 
TransCom-3 study (Gurney et al., 2002) do have vertical mixing biases which were revealed 
by comparing optimized concentration fields with observed vertical profiles not used in the 
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inversion. Models with both too step and too shallow vertical gradients were present. 
Similarly, Yang et al. (2007) used ground-based FTS and aircraft measurements to suggest 
that use of CO2 concentration data in boundary layer in the atmospheric inversions can bias 
the estimated fluxes, and pointed to a weak vertical mixing bias on average in a number of the 
transport models of TransCom-3. They implied that the use of CO2 column data could be 
more relevant for the reliable optimization of terrestrial ecosystem models. Mean weak 
mixing bias in TransCom-3 models by (Gurney et al., 2002) can be attributed to using mostly 
offline models with missing or simplified physical process parameterizations such as shallow 
and penetrative cloud convection and boundary layer turbulence. Some of more recent 
transport models, such as compared by Law et al. (2008) involve complete online transport 
schemes and are expected to do better in vertical mixing. 

In the present study, we optimized CASA with partial column data of CO2 obtained by 
aircraft measurements, and separately, with near-surface data of CO2 for comparison. We 
applied the atmospheric transport inversion method, which is widely used to estimate regional 
fluxes of CO2 (e.g. (Gurney et al., 2004)), to estimate two parameters of the CASA flux 
model (light use efficiency and temperature dependence of the heterotrophic respiration) 
independently for each of the 11 vegetation types. By analyzing the vertical profiles of 
simulated and observed CO2, it was found that the transport model used in this study has a 
weak vertical mixing especially in the northern mid latitude during winter and this inaccuracy 
of the mixing led to the underestimation of NEP seasonality when near-surface data was used 
exclusively. The optimization with partial column data of CO2, on the other hand, is less 
affected by mixing scheme of a transport model and expected to result in more accurate 
optimization of seasonal cycles of NEP field.   

 

2.2 Methods 
In this section, we first present the overall description of the inversion method used for 

the CASA parameter optimization, followed by the detailed description of each part of the 
optimization process as well as the models used in this study. 

2.2.1 Carbon cycle model 
We used the Carnegie-Ames-Stanford Approach (CASA) to simulate terrestrial biosphere. 

Specifically, the CASA described by van der Werf et al. (2003) was used with following 
modifications.  The fire activities in CASA were turned off by setting the burned fraction to 
zero at every grid cell of CASA for all times.  This is because we are only interested in the 
seasonal cycle of NEP in the present study, and the inter-annual variability of the forest fire 
activities is too erratic to account for in the average seasonal cycle (van der Werf et al., 2006). 
As input data for CASA, we used the same dataset as described by van der Werf et al. (2003) 
except for monthly normalized difference vegetation index (NDVI). We used NDVI data from 
Pathfinder AVHRR Land dataset (Agbu and James, 1994) for 1981 to 2001, and derived the 
monthly climatology of NDVI following the method described by Randerson et al. (1997). 
Figure 2.1 shows the distributions of the vegetation types in CASA as well as the abbreviation 
for each vegetation type of CASA used throughout the rest of this paper. We used CASA with 
spatial resolution of 1º latitude × 1º longitude and monthly time step. In the rest of this sub 
section, the algorithms of CASA used to derive NPP and flux of carbon due to heterotrophic 
respiration Rh are briefly introduced since the parameters that control these two quantities 
were optimized in this study.     

― 28 ―

Chapter2 Optimization of the seasonal cycles of simulated CO2 flux by fitting simulated atmospheric CO2 to observed vertical profiles



CGER-I092-2010, CGER/NIES 

 29

TRF

NDF
SVN
GSL
BSB
TUN
DST
AGR

BDF
BNF
NEF

 
Figure 2.1 Map of vegetation types in CASA. TRF: tropical rainforests, BDF: broadleaf deciduous 
forests; BNF: broadleaf and needleleaf forests; NEF: needleleaf evergreen forests; NDF: needleleaf 
deciduous forests; SVN: savannas, GSL: perennial grasslands, BSB: broadleaf shrubs with bare soil, 
TUN: tundra, DST: desert, AGR: agriculture. Red squares on the map indicate the locations of the 
vertical profile data used for this study (see Table 2.1). 

 

The net ecosystem exchange (NEE) in CASA is obtained as a difference between the net 
primary productivity (NPP) and the sum of fluxes due to Rh, fuel wood burnings, and 
consumptions of plants by herbivores. In CASA, the NPP at a grid cell g and time t is given 
by 

NPP (g, t) = IPAR (g, t) ε (g, t)                                                                                (1) 

where IPAR is intercepted photosynthetically active radiation and ε is light use efficiency.  
The value of IPAR in Eq (6) is a function of NDVI  and proportional to photosynthetically 
active radiation PAR (Bishop and Rossow, 1991). On the other hand, ε is a production 
efficiency of an ecosystem for a given IPAR and is expressed as   

ε (g, t) = FT (g, t) FW(g, t) Emax                                                                                  (2)  

where factors FT and FW are dependent on temperature and soil moisture and account for 
stresses induced by temperature and soil water availability, respectively, and Emax is a 
maximum light use efficiency.  To our knowledge, Emax has been taken as a universal constant 
common to all ecosystem types in the original CASA (e.g. 0.5gC (MJ PAR)-1 as used by van 
der Werf et al. (2003)).  

Likewise, conditions of soil moisture and temperature dominate the control over Rh. The 
effect of temperature on Rh is expressed as FR which is an exponential function of a factor Q10:  

FR (g, t) = Q10 {T (g ,t)-30}/10                                                                                         (3) 
where T(g, t) is a surface temperature. In this study, we simultaneously optimized Emax and 
Q10 of each vegetation type; that is, the size of parameter vector p is 22 (i.e. 2 parameters × 11 
vegetation types). Furthermore, we used 0.5 gC (MJ PAR)-1 and 2.00 as the initial values of 
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Emax   and Q10, respectively, and 0.25 gC (MJ PAR)-1
 and 0.30 as the prior uncertainty of Emax 

and Q10, respectively. 

2.2.2 Formalism of the parameter optimization 
In this study, we optimized a set of the CASA parameters, p, using the Bayesian inversion 

in which the weighted mismatches between the modeled and observed concentrations of 
atmospheric CO2 concentrations are minimized. This is equivalent to minimizing the cost 
function J 

J = (x- M(p))TCx
-1(x- M(p)) + (p-p0)TCp0

-1(p-p0)                                                    (4)  

where x is a matrix consisting of the observed CO2 concentrations, M is a transport model 
which maps p to simulated concentrations of CO2, p0 is the initial values of p, and Cx and Cp0 
are the covariance matrices of x and p0, respectively. The operator M consists of atmospheric 
transport model (A) and CASA (B), i.e. M (p) = A B (p). As shown in the following section, 
B is nonlinear while A is linear, so in order to minimize Eq. (4) we expanded B around p0 in 
Taylor series and approximated it up to the 1st-order term:  

M=A[B( p0) + G (p − p0)].                                                                                       (5) 

where G is the first derivative of B(p) with respect to p at p= p0. We evaluated G(p − p0) 
numerically assuming a linear relationship between the first derivative and p for a small 
change in p. Furthermore, the solutions of p which minimizes Eq. (1) is  

p = p0 + [GT Cx
-1

 G+ Cp0
-1]-1 GT Cx

-1 [x – G p0]                                                       (6) 

and the associated covariance matrix of p is 

Cp = [Cp0
-1 + GT Cx

-1 M]-1.                                                                                      (7) 

The detailed derivations of Eqs.(6) and (7) were previously shown, for example, by Enting 
(2002) and Bousquet et al. (1999). In this study, the minimization of J was done iteratively 
since we used the linear approximation in Eq. (5). Throughout the iterative process, the values 
of p0 and Cp0 were fixed at the values described in the following section. Note that, because 
Eq. (5) is not exact, neither p nor Cp obtained by Eqs. (6) and (7) are exact solutions to 
minimize J. Thus, to assign the measure of the improvements in the simulation, we calculated 
χ2 which is the mean-square mismatch between the observed and simulated concentrations:  

 
obsN

n
nnnnnnnnobs pxpxN  )( -()( -(χ 1T12 )( MC)( M x                                              (8) 

where Nobs is the number of observations (i.e. the size of x), and M( p) is in its exact form. 

2.2.3 Atmospheric transport model 
The NIES transport model (Maksyutov and Inoue, 2000) was used to simulate the global 

distributions of CO2 resulting from a given surface CO2 flux. It is an off-line model and uses 
National Centers for Environmental Prediction (NCEP) reanalysis meteorology (Kalnay et al., 
1996). The model has a resolution of 2.5º latitude × 2.5 º longitude, 15 vertical levels (from 
~0.15 to 20 km in altitude), and the time step of 15 minutes. The advection scheme is semi-
Lagrangian with tracer mass adjustment for the conservation of tracer. The monthly 
climatological day-time mean planetary boundary layer (PBL) height, derived from the 
GEOS-1 reanalysis (Schubert et al., 1995), was used to define the PBL height in the model. 
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The detailed description of the model’s scheme for vertical mixing can be found in Appendix 
A of Ishizawa et al. (2006). For this study, the transport model was run for 3 model-years with 
the meteorology of 1997-1999 and appropriate background fluxes (described below), and the 
result from the 3rd year was used to represent the seasonal cycle of the CO2 concentration for a 
given surface flux. Annual anthropogenic carbon fluxes for 1990 (Andres et al., 1996) and 
1995 (Brenkert, 1998) and monthly oceanic flux (Takahashi et al., 2002) were used as the 
background fluxes. The linear trend of the simulated CO2 concentration at each station was 
subtracted from each station data to prepare a detrended seasonal cycle at each station. The 
propagation of response function G (see Eq. (5)) in the atmosphere was simulated with the 
NIES transport model and used to evaluate Eqs. (6) and (7).  

2.2.4 Observed data of CO2  
We used data of vertical profiles of CO2 concentration from GLOBALVIEW-CO2 (2007). 

The locations of the 15 vertical profiles used in this study are shown in Figure 2.1, and the 
vertical coverage at each data point is listed in Table 2.1. The error of each seasonal cycle was 
obtained using the method described by Kaminski et al. (2002). The discrete vertical profiles 
were converted to a partial column concentration, assuming that the each data point represents 
a concentration of CO2 in a column of atmosphere having a thickness of 1000 m centered at 
the altitude at which the data was taken (see Table 2.1). We used weighted mean of the 
uncertainty of each data point in the vertical profile to obtain the uncertainty of the partial 
column concentration. In addition to the dataset of partial column concentrations, the CO2 
concentrations at the lowest level of each vertical profile were collected to prepare the “near-
surface” dataset of the CO2 concentrations. 

 
Table 2.1 Locations and amplitudes of the CO2 vertical profile data used for this study. The data 
were obtained from GLOBALVIEW-CO2 (2007). 

Code Descriptive Name Latitude Longitude Altitudes (m) 
BNE Beaver Crossing, 

Nebraska (USA) 
40.80 º 97.10º W 500, 1500, 2500, 3500, 4500, 5500, 6500 

CAR Carr, Colorado (USA) 40.37º 104.30º W 3000, 4000, 5000, 6000, 7000, 8000 
DND Dahlen, North Dakota 48.38º 97.77º  W  500, 1500, 2500, 3500, 5000 
ESP Estevan Point, Canada 49.58 º 126.37 º W 500, 1500, 2500, 3500, 4500, 5500 

HAA Hawaii (USA) 21.23 º 158.95 º W 500, 1500, 2500, 3500, 4500, 5500, 6500, 7500 
HFM Harvard Forest, 

Massachusetts (USA) 
42.54 º 72.17 º W 1500, 2500, 3500, 4500, 5500, 3500, 7500 

EPT Estevan Point, Canada 49.38 º 126.55 º W 500, 1500, 2500, 3500, 4500, 5500 

HFM Harvard Forest, 
Massachusetts (USA) 

42.54 º 72.17 º W 500,1500, 2500, 3500, 4500, 5500, 3500, 7500 

HIL Homer, Illinois (USA) 40.07º 87.91 º W 500, 1500, 2500, 2500, 3500, 4500, 5500 

LEF Park Falls, Wisconsin 
(USA) 

45.93 º 90.27 º W 500, 1500, 2500, 2500, 3500, 4500, 5500 

NHA Worcester, Massachusetts 
(USA) 

42.95 º 70.63 º W 500, 1500, 2500, 2500, 3500, 4500, 5500 

ORL Orleans, France 47.80 º 2.50 º W 500, 1500, 2500, 3500 
PFA Poker Flat, Alaska (USA)  65.07 º 147.29 º W 1500, 2500, 3500, 4500, 5500, 6500, 7500 
RIA Rowley, Iowa (USA) 42.40 º 91.84 º W 1000, 3000, 5000, 7000 

   TGC Sinton, Texas (USA) 27.73 º 96.86 º W 50, 1500, 2500, 3500, 4500, 5500, 6500, 7500 
THD Trinidad Head, California 

(USA) 
41.05 º 124.15 º W 500, 1500, 2500, 3500, 4500, 5500, 6500, 7500 

ZOT Zotino, Russia 60.00º 89.00º  E   500, 1500, 2500, 3500 
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2.3 Results and discussions 
In this section, we first describe the values of optimized parameters and the changes in 

their uncertainties. Then, the results of the seasonal cycles obtained from the partial column 
data and near surface data will be compared from several aspects.   

2.3.1 Optimized parameters 
The values of both Q10 and Emax stabilized after five iterative calculations to minimize Eq. 

(4) with the observed seasonal cycles of partial column data. However, the values of Q10 and 
Emax fluctuated quite significantly throughout the optimization with near-surface data. Thus, 
we chose to use the results which resulted in the smallest value of χ2

 since we derived χ2 

without any approximations. We found that the value of χ2 decreased from 1.84 to.0.60 after 
optimization with the partial-column data, while it decreased from 2.60 to 1.67 after 
optimization with the near-surface data.  

The optimization with partial-column data resulted in an average Emax of 0.54 gC (MJ 
PAR)-1 and Q10 of 1.81 for 11 vegetation types with standard deviations of 0.20 gC (MJ 
PAR)-1 and 0.29, respectively; while the optimization with near-surface data resulted in 
average Emax of 0.49 gC (MJ PAR)-1 and Q10 of 1.81 with standard deviations of 0.27 gC 
(MJ PAR)-1 and 0.27, respectively. The optimized values of Emax and Q10 for each vegetation 
type are shown in Figure 2.2. The value of Emax optimized with partial-column CO2 were 
greater than or approximately equal to the Emax optimized with the near-surface CO2 data for 
all vegetation types except for BNF. Moreover, Emax of BNF was more tightly constrained by 
the near-surface data than by the partial-column data (Figure 2.3). On the other hand, near-
surface and partial-column inversions resulted in the values of Q10 that are significantly 
different from each other for AGR and NEF, although these two vegetation types had the 
opposite trends in Emax and Q10 (Figure 2.2). Interestingly, near-surface data of CO2 used in 
this study constrained Emax more than partial-column CO2 data while the trend was vice versa 
for Q10 of all vegetation types except for AGR (Figure 2.3).   

 
Figure 2.2 (a) Emax  (b) Q10 and of each vegetation type optimized with partial column 
concentrations of CO2 and near-surface CO2 concentration. The dotted and dashed lines represent 
the initial value and its uncertainty of respective parameter, respectively.  
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At the same time, it has to be emphasized that the optimizations of other parameters could 
have led to the comparable reduction in χ2

 and thus the physical meanings of the optimized 
parameters shown in Figure 2.2 need to be carefully interpreted. Moreover, the available data 
on seasonal cycles of vertical profiles of CO2 are quite limited at this point, and thus the 
results of this study are strongly biased toward the location of the available data as shown in 
Figure 2.3 which shows that some of the vegetation types which have no nearby observation 
points have no significant reduction in the parameter’s uncertainty. Therefore, increasing the 
number of the reliable vertical profile data is expected to improve the confidence level of the 
resulting parameters. 
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Figure 2.3 Uncertainty reduction (%) of (a) Emax and (b) Q10. Note that here, we defined the 
“uncertainty reduction” as {1 − Cp Cp0

-1}.  

 

2.3.2 Growing season net flux and NPP 
To analyze the amplitude of seasonality of NEP of CASA optimized in this study, we 

calculated growing season net flux (GSNF) which is defined as the sum of NEP for the 
months when NEP is positive (Randerson et al., 1997). The use of GSNF is valuable in this 
study since CASA is designed to have no annual net flux (i.e. zero annual NEP) for each 
model grid, and so we can use GSNF as a measure of the productivity of ecosystem in CASA. 
The values of GSNF were higher when CASA was optimized with the partial-column CO2 
data than with the near-surface data at almost all latitudes except for around 40º to 45º (Figure 
2.4). We compared the values of GSNF and NPP for each vegetation type (Table 2.2), and 
found that GSNF decreased notably for BNF when we changed the CO2 data for inversion 
from the near-surface to partial-column data which account for the low value of GSNF from 
partial-column inversion between 40º and 45º. Except for BNF, GSNF and NPP of all 
vegetation types obtained by inversion with the partial column data were either approximately 
equal to or greater than those obtained with the near-surface data, accumulating to 15.8% and 
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17.0% increases in the total annual NPP and GSNF, respectively, upon changing the data 
choice from near-surface to partial column concentrations (Table 2.2). At the same time, 
Randerson et al. (1997) predicted that the global sums of NPP and GSNF for 1990 were 54.9 
PgC y-1 and 13.6 PgC y-1, respectively, and both of these values are slightly larger than 
corresponding values obtained in this study (see Table 2.2). Correctly identifying the cause of 
this discrepancy is out of scope of the present study, since the datasets used for CASA in their 
study are different from those in the present study. Thus, directly comparing the results of 
these two studies is difficult, and so we limit our discussion to the comparison of our own 
results in this paper. Furthermore, using column concentrations of CO2 observed by a ground-
based FTS, Yang et al. (2007) found that the actual GSNF north of 30º is approximately 28% 
larger than the GSNF predicted by Randerson et al. (1997) using CASA.  However, in their 
study, Yang et al. (2007) did not directly evaluate the effects of utilizing column or partial 
column concentrations of CO2 instead of boundary concentration data, and so no conclusion 
was made on how much of this 28% is due to the weak vertical mixing in transport models. In 
the present study, we can directly compare these two cases. For example, our analysis 
indicates that the use of near-surface data of CO2 resulted in GSNF that was 14% less than the 
case with partial-column data for north of 30ºN. At the same time, we note here that this value 
(14%) can be expected to be slightly larger when total column concentrations (e.g. from 
ground-based FTS measurements) are used instead of partial columns used in this study.  

 
Table 2.2 NPP and GSNF of each vegetation type after CASA optimizations with near-surface 
and partial columns of CO2. The global totals are also shown (note the unit change). 

 
 NPP,  gC m-2 y-1 GSNF,  gC m-2 y-1 

Vegetation type Near-surface  Partial-column Near-surface Partial-column  

TRF 434.4 (14.7) 492.4 (14.6) 82.1 (1.6) 92.2 (1.6) 

BDF 295.9 (14.7) 332.1 (14.9) 80.9 (2.7) 90.7 (2.7) 

BNF 919.9 (5.9) 728.9 (8.1) 328.1 (2.7) 229.6 (2.24) 

NEF 238.2 (1.9) 378.2 (2.2) 66.2 (0.6) 147.6 (1.0) 

NDF 183.8 (3.5) 278.5 (4.2) 55.2 (1.2) 78.1 (1.4) 

SVN 698.5 (6.7) 802.2 (7.3) 185.8 (1.1) 223.3 (1.2) 

GSL 49.3 (4.9) 126.5 (5.2) 18.2 (1.1) 45.9 (1.1) 

BSB 55.4 (1.5) 54.2 (1.5) 19.6 (0.4) 19.2 (0.4) 

TUN 112.3 (1.5) 103.5 (1.6) 29.9 (0.6) 26.8 (0.6) 

DST 5.4 (0.2) 5.2 (0.2) 2.2 (0.1) 2.2 (0.1)  

AGR 108.1 (1.4) 148.4 (1.6) 52.7 (0.5) 54.9 (0.5) 

Global total (PgC y-1)  36.7 (0.6) 42.5 (0.6) 10.6 (0.1)     12.4(0.1) 
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Figure 2.4 Latitudinal distributions of GSNF obtained with partial-column CO2 and near-
surface CO2. 

 

-6

-4

-2

0

2

4
BNE

-6

-4

-2

0

2

4
DND

-6

-4

-2

0

2

4
ESP

-8

-6

-4

-2

0

2

4

6
HFM

-10
-8
-6
-4
-2
0
2
4
6

LEF

-8

-6

-4

-2

0

2

4

6

ORL

-8

-6

-4

-2

0

2

4

6

12108642

PFA

-4

-2

0

2

4

12108642

TGC

-10

-5

0

5

12108642

ZOT

Month

Pa
rti

al
-c

ol
um

n 
C

O
2 

co
nc

en
tra

tio
n,

 p
pm

 

 Observed;   Prior;   Posterior (partial-column inversion);   Posterior (near-surface inversion)

 
Figure 2.5 Seasonal cycles of CO2 partial column concentrations. Observed values are plotted with 
the results of 2 cases of CASA optimizations, as well as their prior values.  

 

2.3.3 Seasonal cycle and vertical profiles of CO2 with optimized CASA NEP 
Using two sets of optimized CO2 flux field from CASA along with background fluxes, we 

simulated seasonal cycle of global CO2 concentration field. Figure 2.5 shows that the 
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optimized seasonal cycles of partial-column concentrations resulted in the better fits to 
observations of partial column concentrations than those simulated with prior values of Emax 
and Q10, for both cases of optimizations. Furthermore consistent with the trend of GSNF and 
NPP, the seasonal cycle of CO2 partial-column concentrations simulated with CASA 
optimized with near-surface data had a smaller amplitude than those optimized with partial-
column data (Figure 2.5; results for only selected locations are shown). We also compared the 
vertical profiles of the observed and simulated CO2 concentrations, by averaging vertical 
profiles for northern hemisphere summer (July, August, and September) and winter (January, 
February, and March) (Figure 2.6). By comparing the vertical profiles simulated with 2 cases 
of optimized CASA, we found that the vertical gradients of their CO2 concentrations are 
almost identical while the amplitude of seasonal cycle at a given altitude is greater for the 
CO2 concentration simulated with CASA optimized with partial column data. On the other 
hand, for both of these simulated vertical profiles of many locations, the simulated vertical 
gradients are too strong compared with the observed vertical gradients especially in winter 
(Figure 2.6). This indicates that the vertical mixings in the transport model at these locations 
are not sufficient.  Moreover, similarly to what was suggested by Yang et al. (2007) for the 
average of 12 transport models used in TransCom-3, NIES transport model has insufficient 
rates of vertical mixing both between the planetary boundary layer and upper troposphere 
(Figure 2.6). This weak vertical mixing in the transport model is attributed as a cause of the 
GSNF and NPP of CASA that was underestimated when CASA was optimized with the near-
surface data. That is, low (in summer) and high (in winter) concentrations of CO2 in boundary 
layer, caused by the net flux of CO2 due to activities of terrestrial ecosystem (i.e. 
photosynthesis and respiration), are not effectively propagated to the higher altitudes due to 
the insufficient vertical mixing in the transport model, and this results in artificially high 
amplitudes of seasonal cycle of CO2 concentration near surface even when the correct amount 
of CO2  flux from CASA is given to a transport model. Thus, when only near-surface data of 
CO2 concentrations are used to optimize CASA, the amplitudes of seasonal cycles of NEP in 
CASA are underestimated. On the other hand, when column concentrations of CO2 are used, 
the optimization of CASA is affected less by the inaccuracy of vertical mixing in the transport 
model and more reliable results can be obtained although other problems in the transport 
model as well as other parameters of CASA may bias the results. Furthermore, since the 
method described in this paper can correct the seasonality of CASA NEP without being much 
affected by a scheme of vertical mixing in a transport model, it can be used to prepare flux 
fields of CO2 which can be used as a reference for tuning vertical mixing processes in a 
transport model, and could be complementary to other widely used vertical mixing tracers 
such as radon. 
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Figure 2.6 Vertical profiles of the simulated and optimized CO2 concentrations at each location. 
The simulated profiles were made using the CASA parameters obtained with partial column of CO2 
and near surface CO2 data. 

 

2.4 Summary 
The seasonality of the CASA ecosystem model was optimized using the vertical profiles 

of the observed CO2 concentrations and the inverse of transport model with CASA. We found 
that the method employed in this study can effectively optimize the seasonality of CASA NEP. 
Moreover, we found that the CASA NEP simulated with the partial column concentrations of 
CO2 has larger seasonal amplitude than that simulated with the near-surface data. Our analysis 
showed that annual GSNF predicted with the partial column data was 14% larger than that 
predicted with the near-surface data. Furthermore, the analysis of the vertical profiles showed 
that the low GSNF predicted with near-surface data is due to the weak vertical mixing in the 
transport model used in this study. In conclusion, optimization of an ecosystem model for 
CO2 flux in conjunction with an atmospheric transport model can be more reliably achieved 
with CO2 column concentrations than only with the near-surface data, especially when a 
vertical mixing scheme in a transport model is not accurate enough. As a result, we arrived at 
the CO2 flux model which fits CO2 column observations better and is less dependent on the 
mixing properties of the transport model used in the parameter optimization process. Better fit 
to the partial column average concentration can potentially improve a fit of the forward model 
simulations to the observations of the CO2 by ground based and space based remote sensing 
instruments. Transport model tuning is left beyond a scope of this study because the main 
purpose of producing correct NEP seasonality is achieved by using partial CO2 column 
observations, although it would be even more efficient to simultaneously tune transport and 
surface fluxes, that would allow including surface-only observation sites data consistently 
with vertical profiles. 
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Abstract 
 

 This paper describes the design and implementation of an ocean carbon cycle modeling 
system that uses an offline ocean tracer transport model. The offline ocean tracer transport 
model was devised and applied to simulating a conservative tracer, and the results obtained 
were validated. This model is coupled to a simple biogeochemical model. Air-sea CO2 fluxes 
were simulated. The first two sections of this chapter were reproduced from Valsala et al. 
(2008) with permission, and the third section describes the coupling of the simple 
biogeochemical model to the ocean tracer transport model. 

 
Keywords: Transport models, Offline models, OTTM, Ocean biogeochemistry, pCO2 
modeling, Air-sea CO2 flux modeling 
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3.1 Design of an offline Ocean Tracer Transport Model (OTTM) 
3.1.1 Motivation for OTTM development 

The ocean tracer transports are an order of magnitude slower than that of atmospheric 
transports. It requires relatively longer runs to investigate the life cycle of trace materials in 
oceans such as chlorofluorocarbon (CFC) or dissolved inorganic carbon (DIC). A typical 
example of such a slow transport is an intrusion of anthropogenic atmospheric CO2 in the 
ocean. Observations show that anthropogenic CO2 is intruded as deep as 3000 m in the North 
Atlantic, to date, and this is the deepest penetration of postindustrial CO2 perturbations in the 
world’s oceans (see Key et al., 2004 for the first climatological maps of carbonaceous tracers 
in the World Ocean). Simulation of such a slow transport needs thousands of years of model 
runs, preferably on eddy-resolving configurations, which is still a difficult task for many 
modeling groups. In this aspect, an offline transport simulation is always preferred. 

An offline transport model makes use of precalculated three-dimensional model transport 
vectors, mixing coefficients, and diffusion tensors from an online run, which is recorded at a 
regular interval of time. Here, the word offline means that we do not model the ocean currents 
or stratification explicitly. Instead, they are borrowed from some other model outputs (say, 
from a reanalysis product), which we refer to as “online data.” These online variables are 
archived and interpolated into an adequate time step to evolve the prognostic passive tracer. 
The advantages of solving passive tracers in this manner are manifold. The numerical stability 
constraints for the momentum equation solving [e.g., Courant-Friedrichs-Lewy (CFL) limits] 
can be relaxed in an offline passive tracer simulation because oceanic velocities are an order 
of magnitude smaller than the wave speed (here, concern is given to internal modes resolved 
in the numerical solutions for momentum equations) associated with the momentum evolution. 
Therefore, model time steps can be increased and computational time can be saved efficiently. 
With the advantage of saving computational time, the offline models can thus be more 
focused on higher-resolution configurations. High resolution is necessary to account for the 
subgrid-scale transport of the passive tracers. The candidate models of the Ocean Carbon-
Cycle Model Intercomparison Project Phase-2 (OCMIP-2) have shown a value range of ±30% 
from the mean oceanic uptake of CFC-11, and such large discrepancies among models are 
mainly associated with their inadequate resolution to resolve the subgrid-scale processes 
realistically (Dutay et al., 2002). Thus, by using an offline transport model at a high resolution, 
there is a possibility to improve the predictions of oceanic uptake of anthropogenic chemicals. 

A passive tracer, such as the CFC-11 or bomb C-14, does not affect the ocean dynamics, 
unlike temperature or salinity; thus, a full online simulation by solving all dynamical 
equations is not a strict constraint for passive tracer evolution. A counter argument may be 
that tracers such as anthropogenic CO2 may affect the dynamics because of their coupling 
with biogeochemical loops, and an offline model cannot be a suitable candidate for research 
on a carbon cycle in the ocean (the biological production may affect the light penetration in 
the surface layers, which potentially could alter the dynamics). However, anthropogenic CO2 
can still be treated as “inactive” to the ocean dynamics, arguably, by assuming that a natural 
balance exists between ocean biology and natural CO2 in the ocean (Mikaloff Fletcher et al., 
2006). 

Another advantage of offline models is that they can be used with transport vectors of 
different online simulations. For example, the assimilated ocean currents that have recently 
become available from different modeling groups facilitate us finding more reliable passive 
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tracer transports compared to their online simulations. In addition, such offline transport 
models can be effectively used to find the adjoint of a forward simulation (Hourdin and 
Talagrand 2002; Hourdin et al., 2002). This adjoint calculation is useful to track the water 
masses in the reverse direction in the Eulerian frame, as is being done in the Lagrangian 
backward trajectories (Valsala and Ikeda, 2007). In this aspect, the offline models can be used 
to find the reverse pathways of a passive tracer by flipping the sign of precalculated three-
dimensional velocities (i.e., eastward velocity is changed to westward velocity of the same 
magnitude and runs the offline model backward from the end point of archived online 
circulation), assuming that the influence of mixing, which is of course an irreversible 
mechanism, is less sensitive in the study concerned (see, e.g., Fukumori et al., 2004). 

In addition to the abovementioned uses, the transport model becomes trivial when it 
comes to the inverse estimate of CO2 fluxes from DIC inventories (Mikaloff Fletcher et al., 
2006, 2007). This method is commonly used in the atmosphere. The method is to find the CO2 
fluxes using Gaussian-basis functions derived from a transport model in its response to a 
surface dye injection from discrete regions. Later, each transport function from each injection 
will be fitted to observations of DIC (after removing its “biological component”) in a least 
square sense with a Bayesian inversion technique (Enting, 2002). This new method of ocean 
inversion is promising in its ability to give a reliable CO2 estimation compared to that of the 
atmospheric inversions, because DIC varies slowly in the ocean, and thus the observations of 
several years can be squeezed together to obtain data-covariance matrices for Bayesian 
inversions (Gloor et al., 2003; Mikaloff Fletcher et al., 2006, 2007). Moreover, DIC 
observations are a thousand times larger in number than those of atmospheric CO2 
observations, which facilitate to minimize the mismatch between observations and transport 
calculations. Thus, developing an offline transport model is timely and can serve several 
purposes. 

There are additional offline tracer transport models other than the conventional online 
simulations. For example, Khatiwala et al. (2005) and Khatiwala (2007) have proposed a 
novel strategy for efficient simulation of geochemical tracers in ocean models. The essence of 
their approach is the utilization of the property that the discretized advection–diffusion 
equation of a tracer can be written as a linear matrix equation, which yields a “transport 
matrix” that contains results from the discretization of the advection–diffusion operators 
including the effects of various subgrid-scale processes. The decoupling of the transport 
matrix from the source term makes this approach flexible to any ocean general circulation 
model (OGCM). In this method, however, the transport matrix is obtained using an OGCM 
forced by surface fluxes and boundary conditions. On the other hand, our approach utilizes 
the accuracy present in the assimilated ocean currents to estimate the tracer transport, and the 
method is still flexible to a family of input products because of the diagnostic mixing and 
subgrid-scale processes incorporated into the model. 

Offline simulation of tracer transports is often practiced with OGCM outputs such as 
circulation and mixing coefficients. For example, a coupled offline transport and 
biogeochemistry model was used by McKinley et al. (2004) to simulate the interannual 
variability of air-sea CO2 flux in the Pacific. The accuracy of such simulations is largely 
dependent on the circulation and mixing coefficients that are borrowed from the parent 
models. On the other hand, our model depends on assimilated ocean currents, which we will 
show to be efficient. In addition, the diagnostics for mixing and other subgrid-scale processes 
make this model flexible to a family of input assimilated ocean currents. Gupta and England 
(2004) have also developed a similar offline model with input data derived from the Parallel 
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Ocean Climate Model (POCM_4C). A detailed comparison of this model with our model will 
be given in the next section.  

This article describes the design and validation experiments of an offline tracer transport 
model. In this version of model, the tracer is assumed as conservative in the ocean as is the 
case for CFC or anthropogenic CO2. The design philosophy is described in the following two 
sections. A validation is done by simulating the CFC-11 cycle in the oceans, and results are 
described in section 3.3. 

 

3.1.2 Design 
In this section, we will see the basic structure of the model, such as its numerical 

discretization, diagnostic-mode parameterizations, and parallel implementation on the 
computer. The data inputs used in this study are described in section 3.3. Later, we will use 
this model to simulate the CFC-11 cycle in the ocean. The evolution of any conservative 
tracer concentration C can be written as  

 ∂C/∂t + U •HC + W ∂C/∂z = ∂/∂z Kz ∂/∂z C + H •(Kh H C) +  (1) 

where ∇H is the horizontal gradient operator, U is the horizontal velocity, W is the vertical 
velocity, Kz is the vertical mixing coefficient, and Kh is the two-dimensional diffusion tensor. 
A term φ is added to the RHS of Eq. (1) to represent any sink or source, which can be 
interpreted as internal consumption or production of the tracer as well as the surface intake 
and efflux. However, this version of the model deals with passive conservative tracers, and 
thus any internal production or consumption is inhibited with only one source term for the 
surface fluxes. 

In this version of the model, we parameterize the vertical mixing and horizontal diffusion 
completely from the offline transport vectors (i.e., three-dimensional circulation), temperature 
(T), and salinity (S). We chose this parameterization because the offline fields are mostly 
available as circulation and hydrography; mixing or diffusion coefficients are seldom 
available. In most of the offline tracer experiments, the coefficients of subgrid-scale mixing 
and diffusion are borrowed from the parent online runs instead of estimating them from 
offline fields. However, a general tool such as our model, which is flexible to any online field 
irrespective of its sources, is desirable to devise self-operating routines for subgrid-scale 
parameterization. From a physical point of view, this attempt is justifiable because passive 
tracers seldom affect the dynamics or stability of the ocean (see section 3.1). Thus, borrowing 
these coefficients from an online archive or recalculating afterward within the offline runs 
does not make any physical difference. However, a more serious consideration should be 
given to the frequency of updating the online fields in the offline runs (i.e., time interval of 
archived offline fields), which is critical in eddy-induced tracer transports, unless they are 
parameterized explicitly. 

 

3.1.2a Vertical mixing 
We have opted for a K-profile parameterization (KPP; see Large et al., 1994) for the 

vertical mixing after a selection carried out over a number of several other schemes, which are 
normally practiced in ocean modeling. In particular, we have tested the second-order level-2 
turbulent closure schemes (Mellor and Yamada, 1982) and the more simple slab mixed-layer 
schemes in our offline model. We found that the KPP yields the most reasonable simulation 
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compared to the other schemes. In KPP, the vertical mixing is resolved by generating a 
nonlocal k profile, which falls within the mixed layer and yields a depth-dependent mixing 
coefficient (Kx), as follows: 

   Kx() = hwx() G()    (2) 

where (σ = d/h) is the scaling of depth within the mixed layer (h) whose value ranges from 
zero at the surface to one at the bottom of the mixed layer. Here, G(σ) is a cubic polynomial 
shape function: 

   G() = a0  + a1+ a22+a33  (3) 

where a0, a1, a2, and a3 are the coefficients that control the diffusivities and their derivatives at 
both the top and the bottom of the mixed layer. The values for these coefficients are chosen 
from Large et al. (1994). In a stable condition, the turbulent velocity scale wx in Eq. (2) has 
two key forms: 

   wx = k(axu*3 + cxkw*3)1/3    if       (4) 

   wx = k(axu*3 + cxkw*3)1/3    if   ≤   1   (5) 

The ɛ is the nondimensional extent of the surface layer, which we have chosen to be ɛ = 0.1 
as in Large et al. (1994). The κ is the von Kármán’s constant (0.40). The ax and cx are the 
coefficients of nondimensional flux profiles for the tracers whose values are chosen as ax = 
−28.86 and cx = 98.96. The turbulent friction velocity (u*) and convective velocity (w*) are 
produced by surface momentum flux (wind stress) and heat flux, respectively, for which we 
have used the monthly climatological values derived from Hellerman and Rosenstein (1983) 
and Josey et al. (1999). Below the mixed layer, the vertical convection is controlled by three 
processes: vertical shear, internal wave breaking, and double diffusion. These are defined 
from Large et al. (1994). 

In addition to the KPP, we have provided a depth-dependent, background vertical 
diffusion as suggested in Bryan and Lewis (1979; hereafter BL79). This varies from 0.3 × 
10−4 m2 s−1 in the upper ocean to 1.3 × 10−4 m2 s−1 at depth. This is to compensate for any loss 
of sporadic convection, especially outside the mixed layer, which cannot be accounted for by 
a coarse temporal resolution of offline archives. 

There are several reasons that can be given as to why the offline fields fail to parameterize 
a reasonable amount of mixing with schemes that generally perform appreciably well in the 
online runs. In the offline runs, the frequency of data feeding into the model is crucial. For 
example, the sporadic convections and mixing that occur on time scales of a few days, or even 
a subinertial period, may be missing by the time the offline fields are incorporated into the 
model. Most often, the reanalysis products or some control runs from other modeling groups 
are available on monthly scales. Any subsampling below monthly (e.g., daily or hourly) fields 
needs an enormous amount of data storage for the simulation carried on global scales in fine 
resolution (e.g., studies like the CFC or DIC cycle in the ocean). In addition, the unpacking of 
such a huge offline data storage affects the computational speed of the integration, and thus 
the offline models will be losing computational time, resulting in any practical gain over 
online models.  

An optimum choice for parameterization of vertical mixing needs to be devised before 
applying the model to a particular application. Thus, our approach has two parts: (i) first, an 
optimal configuration with KPP + BL79 is found to yield a realistic performance, and then (ii) 

― 46 ―

Chapter 3 Design, simulation and validation of an ocean carbon cycle system using an offline Ocean Tracer Transport Model (OTTM)



 CGER-I092-2010, CGER/NIES 

 

 47

we map the offline mixed layer depth (MLD) from the parent model, and KPP profiling is 
carried within it instead of estimating our own mixed layer depth. The main cause for this 
adaptation is so that we can use the maximum amount of information provided by the 
assimilated ocean offline data field. This parameterization is, however, to some extent 
equivalent to adopting a spatially varying “slab mixed layer.” But our choice is more realistic 
because it accounts for a variable mixing within the mixed layer. The material properties in 
the ocean are found stratified within the mixed layer, whose parameterization is the essence of 
KPP. In addition, there is a possibility of improving the below mixed layer ventilation process 
in the model by taking advantage of a high vertical resolution in the surface layers and a 
variable vertical mixing profile. 

 

3.1.2b Horizontal mixing 
The Kh and Kz collectively represent the three-dimensional tensor. The diffusion tensor 

incorporates diffusion fluxes rotated tangential to the local isopycnals, the so-called isopycnal 
diffusion, an important process for ocean ventilation in the high latitude. A tracer in the ocean 
mixes mainly along the isopycnals rather than across the isopycnal (i.e., diapycnal). Redi 
(1982) rotated the diapycnal diffusion fluxes tangential to the local density gradient and 
achieved advancement in ocean tracer diffusion modeling. However, the Redi fluxes will be 
zero in the case of density evolution. In a Boussinesq ocean, the divergence of density due to 
mean currents is locally balanced by the divergence due to the eddy-induced currents. Thus, in 
noneddy-resolving models (i.e., a coarse-resolution model), eddy-induced divergence of 
density should be parameterized to cascade the tracer variance from mean transport to a 
turbulent transport as in reality. In Gent and McWilliams (1990), the eddy-induced “bolus” 
velocities are shown equivalent to layer thickness diffusion appearing as an eddy-induced 
advection and are added to the mean advection fluxes. Thus, by combining the Redi fluxes 
and GM fluxes, a realistic tracer mixing is achieved in present-day OGCMs (Pacanowski and 
Griffies, 1999). In our version of the offline model, we incorporate both Redi fluxes and GM 
fluxes in the tracer equation, as follows: 

∂C/∂t + U•C + z•[C∂/∂z(Kh z ρ/ρz)] - ∂/∂z [Cz•(Khz ρ/ρz) ] = R(C) + (other terms)   
(6) 

where ρ is the isopycnal surface, with its prefix meaning its gradient, and R(C) is the 
isopycnal Redi fluxes (Redi, 1982). The “other terms” stand for the vertical mixing and 
horizontal diffusion as given in Eq. (1). This is a reasonable alternative for coarse-resolution 
models to mimic eddy-induced mass convergence (Pacanowski and Griffies, 1999). Although 
the eddy-induced transport can be an unnecessary addition to fine-resolution models, we 
incorporated it in our model because it can be used with different offline fields, which come 
in various resolutions. The contribution of GM fluxes to total transport fluxes will be feeble in 
fine-resolution cases because the difference in the slope of the density surface between 
adjacent grids becomes negligible as the resolution becomes finer; thus, it seldom 
overestimates the advective fluxes. Instead, its contribution becomes significant in coarse-
resolution cases where it accounts for the loss of turbulent cascading of tracer variances in the 
form of eddy-induced transports. 

Apart from the isopycnal mixing (Redi, 1982), a weak Laplacian diffusion is provided to 
give computational stability where a sharp concentration gradient occurs. The effect of this 
Laplacian diffusion is minimal because such lateral diffusion results in unrealistic mixing and 
smeared ventilations (Dutay et al., 2002). The coefficient for Laplacian mixing is taken as a 
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function of latitude (θ) as Ah(θ) = Ahbackcos(θ)1/5, in which Ahback is set at 5.0 × 102 m2 s−1. This 
yields a diffusion coefficient tapered to a minimum value of 20 m2 s−1 at the polar region in 
the converging meridian. 

 

3.1.2c Grids 
 The offline model takes the velocity fields and stratification from a precalculated archive. 
Thus, the grid design depends on the parent model from which the offline fields are borrowed. 
In most of the general circulation models, the volume is conserved in every grid cell locally 
because water is incompressible (a Boussinesq approximation is made) and velocities can be 
interpolated into the desired grid; thus, the choice of grid becomes nonmandatory. However, 
this assumption is not applicable in a nonrigid lid model in which surface volume is changing 
with rainfall and evaporation. In this article, we describe the model in a B-grid structure, as 
done in the parent online model, in which the velocities are at the corners of the tracer grids. 
The tracer Eq. (1) is solved using the flux form, where the velocities at the cell faces are 
multiplied by the tracers at the same location and are found to be a gradient of the fluxes. This 
guarantees the conservation of tracer in the incompressible Boussinesq ocean (S. M. Griffies 
2006, personal communication). 

The horizontal grids are designed in a spherical coordinate, and vertical grids are z level 
as in the parent model. In the spherical coordinate, the longitudinal grid cells converge as they 
reach the poles, and to attain stability with a uniform time step everywhere in the domain, the 
high-frequency fluctuations due to numerical instabilities are filtered on every time step in the 
northern latitude (i.e., poleward of 80°N) using a Fourier filter (Pacanowski and Griffies, 
1999). However, in this study, the model domain is limited to 80°N so that poleward filtering 
is not effective in the results shown here. 

A centered-in-space and centered-in-time (CSCT) time-space finite difference scheme is 
adopted. We prefer this scheme mainly because the offline transport vectors used in this study 
are configured in CSCT. Although it is possible to attain mass conservation in a different 
finite difference form than the parent model, we opt for CSCT because it gives second-order 
accuracy compared to several upstream with first-order accuracy. Hecht et al. (1995) have 
compared the passive tracer simulation of the CSCT scheme with several upstream schemes 
and found that for any given magnitude of circulation, the resolutions of the grids are more 
crucial than a preference on particular finite difference schemes. 

The numerical diffusion in CSCT (i.e., the artificial diffusion due to the limitation of 
finite difference) damps the solutions, especially at a high wavenumber, while the low 
wavenumbers are unaffected (Kantha and Clayson, 2000). This may have an impact on eddy-
induced tracer transport, especially in the western boundary current regions such as the 
Kuroshio, Gulf stream, and Agulhas. An Asselin–Robert filter (Asselin, 1972) is applied to 
regulate any ripples in the CSCT scheme with a coefficient of α = 0.1, and all diffusion 
tensors are calculated at one time step behind advection. At the land boundaries, no-normal 
flux is applied. On the surface, the tracer flux enters or leaves the models’ surface level [see 
Eq. (1)]. The model is solved in explicit time stepping, except for the vertical mixing, which 
is solved implicitly using matrix inversion by LU decomposition (Kantha and Clayson, 2000). 
The vertical mixing solution cannot be integrated forward explicitly with a large diffusion 
coefficient demanded by the offline fields (artificial exaggeration of coefficients to account 
for loss of convections in a smoothed monthly offline fields by adopting a KPP + BL79 
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scheme; see section 3.1.2a). In addition, the implicit vertical mixing is unconditionally stable 
and it can adopt a large time step even in a very fine vertical resolution. 

A similar offline ocean model with high resolution has recently been developed at the 
University of New South Wales, Australia, by Gupta and England (2004), and it has achieved 
a remarkable improvement on CFC-11 simulation over the coarse-resolution OCMIP-2 
candidate models. Our model, although in many ways similar to their model, has a major 
difference in the vertical mixing parameterization. In the Gupta and England (2004) model, a 
direct implementation of mixed layer depth is used, which they obtained from the density 
criteria into the tracer evolution. However, our model depends on the physical mechanism to 
find the vertical mixing, which is still possible to extract from the offline fields, and is 
parameterized using KPP. We found that with a high vertical resolution [we use 50 levels, 
which is double the number of levels of Gupta and England (2004)], vertical mixing can still 
be resolved from the offline fields. We have tested our KPP scheme in a very coarse vertical 
resolution case (18 vertical levels) and found that KPP performance is not appreciable. 
Furthermore, their model does not parameterize the isopycnal mixing and GM eddy- induced 
transport because of the high resolution they use. However, our model also incorporates these 
schemes that make the model flexible for very fine to moderate coarse-resolution cases. 

 
Figure 3.1 A schematic presentation of the model domain decomposition. The master node splits 
the model domain into approximately equal latitudinal strips and assigns to each compute node. The 
MPI phase communicates the boundary values across the neighboring nodes. The assemble phase 
combines the output from each nodes and write to the disk.  

 

3.1.3 Numerical implementation 
The model is written in FORTRAN-77 with a parallel implementation using Message 

Passing Interface (MPI) protocols. The model posses a modular structure with each 
parameterization is linked as “ifdef-endif” preprocessor which can be controlled externally 
using a Makefile. The model can be compiled in either Intel parallel compiler (mpif90) or 
Portland Group Compiler (pgf90). 

Figure 3.1 shows how the model domain is split for the parallel computation. The entire 
globe is divided into latitudinal strips and each computer node will be assigned to each strip 
of the globe. The boundary values between two consecutive strips are shared as shown in 

― 49 ―

CGER-I092-2010, CGER/NIES



Chapter 3 Design, simulation and validation of an ocean carbon cycle system using an offline Ocean Tracer Transport Model (OTTM) 

 50

Figure 3.2. The size of the memory window sharing at the strip boundaries are 2 and 4 for the 
Laplacian and biharmonic tracer diffusion, respectively.  

 
Figure 3.2 Memory window sharing at strip boundaries. Three memory windows are shared. 

 
Figure 3.3 The model flow chart showing the sequence of operations in OTTM. 

 

Figure 3.3 shows the model flow chart. The model starts with invoking the parallel 
environment needed for the MPI parallel computation. The model possesses a common array 
of global circulation and other parameters which contain all the offline data accessible for all 
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the computer nodes. However, the offline archive is interpolated into the model time steps 
only for necessary partitions of the array within each processor. At each integration time step, 
the data is interpolated into the model time step within each processor. The model is flexible 
in choosing independent time steps for the data update from the offline archive and model 
integration using a time split method. In the present version of the model, monthly archives of 
the offline data are used and they are interpolated into one-day time steps. The time-split 
method will operate the integration in every two hours. 

 

3.2 Validation of OTTM with CFC-11 simulations 
3.2.1. Data and model experiments 

We use the flow vectors and stratification (i.e., temperature and salinity) derived from the 
ocean assimilation product of the Geophysical Fluid Dynamics Laboratory (GFDL). The 
model configuration of assimilated products contains the Modular Ocean Model-4 (MOM4-
SIS) ocean–ice component coupled to the Climate Model (CM2.1) with assimilation of in situ 
temperature profiles from the National Oceanographic Data Center (NODC) archives using a 
3D variational scheme. (The data is obtained from 
http://data1.gfdl.noaa.gov/nomads/forms/assimilation.html.) This dataset has a resolution of 
1° zonally, with 360 grid points. Latitudinal resolution is 1° at the poles, with a high 
resolution (0.8°) in the tropics containing a total of 200 grid points. With this horizontal 
resolution, the input solutions do not resolve mesoscale features explicitly, and hence we 
parameterized it in our offline model. The model contains 50 vertical levels with a 10-m 
resolution in the upper 225 m and stretched vertical intervals below the depth by including 30 
levels in the upper 500 m. With this high vertical resolution, the entrainment and vertical 
velocities might be resolved explicitly in the data, while vertical mixing has to be 
parameterized. The mixed layer depth is borrowed from the same assimilation data. The 
assimilated currents, stratification, and mixed layer depth are obtained for 15 yr. A monthly 
average value from the 15 yr is constructed. For the atmospheric forcing, wind stress from 
Hellerman and Rosenstein (1983) and surface heat flux from Josey et al. (1999; both are 
monthly climatology) are used. Note that these surface boundary conditions are used only to 
parameterize the vertical mixing in the model, and the same boundary condition as that in 
OCMIP-2 experiments is used to force the CFC-11 in the surface (see Dutay et al. 2002 for 
OCMIP-2 CFC-11 surface flux protocols). The model is then used for the following set of 
experiments and run in parallel across 32 vector processors using the Message Passing 
Interface (MPI) communication protocols. 

CFC-11 and CFC-12 are anthropogenic carbonaceous substances emitted to the 
atmosphere by increased human activity since the Industrial Revolution during the early 
twentieth century (Dutay et al., 2002). Although the atmospheric concentration of CFC-11 is 
increasing exponentially, only 30% remains there and the rest is absorbed by the ocean and 
transported downwards. The CFC-11 enters the ocean mainly at high latitudes where large- 
scale oceanic sinks are located because of the ocean ventilation processes. To find the air–sea 
exchange of this atmospheric CFC-11, we need information on the partial pressure difference 
between CFC-11 in the ocean surface and the immediate atmosphere. 

The model is forced with a surface concentration of CFC-11 in the atmosphere provided 
by OCMIP-2 flux protocol. The surface CFC-11 flux is calculated as F = Kw(Csat − Csurf), 
where the Kw is the piston velocity (m s−1) with which the CFC is injected into the ocean, 
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depending on the wind variance and sea surface temperature. The Csat (mol m−3) is the 
saturation level of CFC in the surface of the ocean, which depends on the atmospheric 
pressure, solubility for water vapor saturated air, and partial pressure of CFC in dry air at one 
atmosphere total pressure. The Csurf (mol m−3) is the model surface concentration of CFC-11. 
This is the standard OCMIP-2 flux protocol for the CFC calculation, and we kept the same 
forcing as that of candidate models that participated in OCMIP-2 (Dutay et al., 2002). This 
facilitates the direct comparison of our results with other candidate models of OCMIP-2. The 
model starts with initial zero concentration of CFC-11 and is integrated from 1938 to 1998 
with the anthropogenic perturbation of the observed atmospheric CFC-11. 

 

3.2.2 CFC-11 cycle in the ocean 
The model performance is compared with CFC-11 observations of the Global Ocean Data 

Analysis Project (GLODAP) dataset (Key et al., 2004). Notice that the GLODAP product is 
compiled from a number of cruise observations, which are mainly derived from the World 
Ocean Circulation Experiment (WOCE), Joint Global Ocean Flux Study (JGOFS), and Ocean 
Atmosphere Carbon Exchange Program (OACES) carried out during the 1990s (see Key et al., 
2004 for the time periods of these cruises). In addition, several other historical cruise 
observations from the 1970s and 1980s are also included in the GLODAP data. The sampling 
population consists of 9618 global observation stations (from 95 cruises) during the period 
1985–99, and 2393 global observation stations during the period 1972–90 (21 cruises). There 
are very few observation stations that were used from historical cruises that date back to 1972. 
In GLODAP, all these observations are combined into one dataset, and thus they do not 
exactly represent the scenario of a particular year. However, the majority of samples used in 
the GLODAP dataset is collected between the period 1990 and 1999 during WOCE cruises, 
which consist of 80% of the total sampling from 78% of the total cruises. Thus, it is possible 
to represent the data as a scenario of 1993 or 1995. In this study, we compare the model year 
1995 with the observations, unless otherwise specified. This is true especially in the Atlantic 
Ocean, where the majority of observations included in GLODAP are carried out during the 
early 1990s. 

Before proceeding into real-time runs, we optimize a suitable model configuration from a 
number of test experiments carried out with different choices of vertical mixing 
configurations. The results of these test experiments are then compared with CFC-11 
observations and an optimum configuration is found. In these test experiments, the main focus 
is given to tuning the vertical mixing. Such test experiments to find a best configuration is 
necessary because the offline transport models are operating on some parent model outputs 
with variable periodicities of input data. In this case, the performance of transport models is 
sensitive to the frequency of input data, and so the model behaves slightly different for 
different sets of input feeding. Thus, before getting into application runs, the model 
performance must be tested with different sets of configurations and a best case should be 
found. 

 A number of test experiments are conducted, among which a suite of six are mentioned 
here. In these runs, the variable parameters are either one or a combination of (i) mixed layer 
depth, (ii) monthly climatology of wind stress or a globally constant wind stress for KPP, and 
(iii) inclusion or exclusion of subgrid-scale parameterizations. The mixed layer depth of the 
GFDL product that we used in this study is somewhat “weaker” than the observations of Kara 
et al. (2000). Thus, the MLD is multiplied by a factor of 1, 1.5, and 2 for individual test runs. 
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These three cases are then combined with or without GM subgrid-scale parameterizations and 
with monthly wind stress climatology or a constant wind stress of 0.03 N m−2. Table 3.1 
summarizes the experiment cases. Note that all these sensitivity experiments have the same 
CFC-11 forcing as in OCMIP-2. 

 
Table 3.1 Test experiments. GM = Gent and McWilliams’s (1990) parameterization; MLD = mixed 
layer depth; Clim = monthly climatological wind stress. 

 

 
 

 
Figure 3.4 CFC-11 concentration integrated zonally and vertically over (top) the Atlantic Ocean 
and inventories along (bottom left) 30°W and (bottom right) 20°W. Units are (top) pmol m2 kg−1 
and (bottom) pmol m kg−1. 

 

 Figure 3.4 shows the CFC-11 simulations of six runs and compares them with the 
corresponding observations. The plots represent the zonal integral of Atlantic CFC-11 column 
inventories during 1995. The units are picomole meters squared per kilogram. It is evident 

 1×MLD 1.5×MLD 2×MLD 

Clim 1_MDL_GFM_Clim 1.5_MLD_GM_Clim 2_MLD_GM_Clim 

0.03 1_MDL_GFM_0.03 1.5_MDL_GFM_0.03 2_MLD_GM_0.03 
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that the model’s performance varies considerably among different combinations of 
configurations. A large difference in the model performance is obvious in the Southern 
Hemisphere deep convection regions (between 60° and 40°S). The best match with the 
observation is obtained by the run 2_MLD_GM_Clim (2 times the MLD adopted from GFDL 
product, with GM parameterization and a climatological stress). The prediction statistical skill 
and error estimates for each of these test runs are shown in Table 3.2; the correlation between 
observations and each of these test runs gives us a quantitative evaluation of the cases 
presented here. 

 
Table 3.2. Statistical summary of test-run simulations shown in Figure 3.3. Acronyms are same as 
those given in Table 3.1. 

 

Data stdv 

=0.69 

1_MLD_ 

GM_Clim 

1_MLD_ 

GM_0.03 

 2_MLD_ 

GM_Clim 

 2_MLD_ 

GM_0.03 

1.5_MLD_ 

GM_Clim 

1.5_MLD_ 

GF_0.03 

Corr. 0.88 0.87 0.94 0.91 0.92 0.89 

Stdv. 0.39 0.46 0.60 0.64 0.62 0.56 

Skill 0.69 0.80 0.95 0.94 0.94 0.87 

RMS 0.39 0.37 0.23 0.28 0.28 0.32 

 

The discrepancy in the Southern Hemisphere among the different model configurations is 
mainly due to the difference in the vertical mixing. It is obvious from the figure that the 
mapping of the same MLD as that of the input data underestimates the vertical mixing in the 
Southern Hemisphere. However, a constant wind stress of 0.03 N m−2 erodes the mixing 
further and deeper, although this is not satisfactory in the Northern Hemisphere. A choice of 
1.5 times the MLD gives s better simulation in the Northern Hemisphere, while that in the 
Southern Hemisphere is still weaker. Column inventories along 20° and 30°W in the Atlantic 
are shown separately in the bottom panels. It is obvious that the vertical mixing is sensitive to 
the choice of MLD. 

The standard deviation of CFC-11 from the mean inventories in the Atlantic Ocean is 0.69 
pmol m2 kg−1 (Figure 3.4, top; Table 3.2). Although the standard deviation of three test 
simulations are close to this value, a high correlation coefficient of 0.95 leads us to prefer the 
case 2_MLD_GM_Clim as being more suitable (Table 3.2). For this particular case, the 
statistical skill score (as suggested in Taylor 2001) has a maximum value of 0.95, and a 
centered pattern of the root-mean-square (RMS) difference has a minimum value of 0.23. 
Thus, we opt for a choice of 2 times MLD with climatological surface wind stress forcing as 
the best case, and we consider only this case for the rest of our experiments. We note, however, 
that this configuration does not imply the ultimate choice for this model; instead, it only 
means that it is the best-suited configuration for the input data used in this study. 

3.2.2a Comparison with observations 
 The deepest penetration of CFC-11 in the global ocean is found in the North Atlantic, 
where the deep-water formation sites are located. Thus, the deep-water formation process 
should be simulated well in the model to capture this deep penetration of CFC-11. Therefore, 
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we concentrate our discussion more on the model’s Atlantic Ocean transports and its 
comparison with observations.  

 
Figure 3.5 Column inventory of CFC-11 from (left) observations and (middle) model during 
1995. The model error is shown as the difference from the (right) observations. Units are 103 pmol m 
kg−1. 

Figure 3.5 shows the column inventory of CFC-11 (vertically integrated) during 1995 
obtained from our model and the corresponding observations obtained from GLODAP. The 
units are picomole meters per kilogram. Although the column inventories do not represent the 
deep penetration of tracers explicitly, we begin our comparison for a large-scale model 
simulation and then proceed to a more detailed comparison of regional vertical profiles. A 
remarkable similarity in the column inventories of CFC-11 is noticeable in the Atlantic. The 
deepest convection in the North Atlantic is located in the Labrador Sea, where the mixed layer 
extends as deep as 800–1300 m (Canuto et al., 2004). Observations show that maximum 
CFC-11 column inventories are located in the Labrador Sea. The model captures this 
maximum appreciably well with a magnitude of 11 × 103 pmol m kg−1 as in the observations. 
A second maximum inventory is located north of 70°N in the Greenland and Norwegian Seas. 
However, there is no available observation of CFC-11 to validate these sites. 

 The meridional gradient of the CFC-11 column inventory in the model is remarkably 
similar to that of observations. The North Atlantic water mass is subducted at various 
locations, such as the Labrador Sea, Denmark Strait, and Iceland-Scotland Overflow regions. 
CFC-11 in these deep regions is advected southward mainly along with the deep western 
boundary currents. This southward advection along the western boundary is visible by 
coastally elongated contours in the observations. It is appreciably represented in the model 
with a good agreement in magnitude compared to the observations. Further, this southward 
component of CFC-11 is advected eastward in the deep ocean, which makes a meridional 
gradient of CFC-11. It is noted that the model has a steeper north-south gradient of CFC-11 
than those in the observations. 

 In the Southern Hemisphere, the high CFC-11 inventory is located between 40° and 50°S. 
This is the region where deep convection in the Southern Hemisphere is observed. The 
maximum penetration of CFC-11 in this belt is found near the South American continent. This 
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deeply convected water is advected horizontally to the east at a depth of 1000 m and marks a 
high-concentration belt between 40° and 50°S. This region demarcates the boundary of the 
subtropical gyre with the polar front, and the water mass is ventilated from the depth below 
the mixed layer to the deep ocean. This water is referred to as the South Atlantic Mode Water 
(SAMW), which is a key portion in the southern Atlantic where oceanic uptake of CO2 is 
prominent (Dutay et al., 2002). In the Antarctic Ocean, the model shows a mismatch with the 
observation at 40°W. This may be due to a limitation in the ice-water formation in the model 
circulations. 

The large-scale transport of the model is in good agreement with the observations. This is 
further evaluated by estimating the error in the model column inventory, which is due to either 
one or a combination of uncertainties in large-scale circulations and diagnostics used in the 
model. The error estimates are shown in Figure 3.5 (bottom). Here, the error represents the 
model drift from the observations. It can be seen that the predictions fall within an overall 
error bar of ±0.4 × 103 pmol m kg−1 in the Atlantic. This is within a range of ±10% of the 
observations. However, the meridional error difference is as large as the maximum error of 
1.5 × 103 pmol m kg−1. In the subtropics, at midlatitude and high latitude, the error bar is 
within ±10%, while in the equatorial region, the error is projected as high as 30%. Simulating 
an accurate meridional transport of tracers is a real challenge in transport models. For 
example, the atmospheric transport model has large error bars in the interhemispheric gradient. 
Given the values of 9 × 103 pmol m kg−1 meridional difference of CFC-11 observed in the 
North Atlantic, an error gradient of 1.5 × 103 pmol m kg−1 reasons an error of 16% in the 
simulated meridional gradient of CFC-11. The model-centered RMS difference of CFC-11 
uptake in the entire Atlantic is 0.23 pmol m2 kg−1, which is ±5% of the observed mean (Figure 
3.4 and Table 3.2). The detailed examination of the vertical profile of the model CFC-11 will 
further explain this error behavior in the model. 

 Although the column inventory of CFC-11 in the Atlantic Ocean is well simulated in the 
model, a detailed vertical structure should be assessed with the observations because the 
inventories do not provide exact information about the vertical profile. To assess the model’s 
ability to simulate deep convection and ventilation, we compare a few vertical sections in the 
Atlantic Ocean with the observations. Figure 3.6 shows the North Atlantic cross section along 
30°W. The examination of the North Atlantic sections provides the ventilation pathways of the 
CFC. The key water masses forming in the North Atlantic consist of North Atlantic Deep 
Water (NADW), which is composed of Lower North Atlantic Deep Water (LNADW) and 
Upper North Atlantic Deep Water (UNADW). The elevated contours below 1000 m in the 
deep ocean are due to the renewal of NADW. This is reproduced reasonably well in the model. 
The elevated contours in the observations show a deep-core maximum between 1500 and 
2000 m, which is the UNADW subducted from the base of the mixed layer. The subducted 
water is shown to be carried farther eastward by the deep ocean currents at this depth. In the 
model, this core is found above 1500 m. This is partially due to the relatively limited supply 
of UNADW eastward, which is subducted at the western coast. It is noted that the contour of 
0.5 in the model stretches to a depth of 3000 m, as in the observations. 

 We can assess in more detail the NADW ventilation characteristics from the zonal section 
at 24°N (Figure 3.7, as shown in Dutay et al. (2002)). The classical 24°N section shows an 
obvious double core of high concentration at the western boundary, each located between 
3000 and 4000 m and between 1500 and 1800 m. The former is the LNADW, which is 
supplied from the Denmark Strait Overflow Water (DSOW) and Iceland–Scotland Overflow 
Water (ISOW), which is then carried south along with the deep western boundary currents. 

― 56 ―

Chapter 3 Design, simulation and validation of an ocean carbon cycle system using an offline Ocean Tracer Transport Model (OTTM)



 CGER-I092-2010, CGER/NIES 

 

 57

However, there is no obvious deep core reproduced in the model. It should be noted that a 
high-resolution version of the offline model by Gupta and England (2004) also didn’t resolve 
this double-core structure. Moreover, none of the OCMIP-2 models (most of them are online 
models) reproduced this double-core structure of CFC. Thus, a comparison between the 
previous results of OCMIP-2, Gupta and England (2004), and our results shows that the 
resolution is not the reason for the absence of such a double-core system. Also, our results 
show that the shallow core (between 1500 and 1800 m) elongates further down to 3000 m. 
One possibility for the absence of an obvious double-core system in the models may be 
because of the increased diapycnal mixing that occurs at the region with an intense western 
boundary current, which smears the cores and mixes each other (although a deep western 
boundary current exists as distinct cores). It is also noteworthy that the only candidate in 
OCMIP-2 to resolve this feature reasonably well is Germany’s Alfred Wegener Institute for 
Polar and Marine Research (AWI) model, which was originally an adjoint model that derived 
circulation from hydrographic and geochemical data (Dutay et al., 2002). 

 
Figure 3.6 Model-simulated CFC-11 in the North Atlantic (middle) along 30°W during 1995, 
(left) corresponding observations, and (right) model error. Units are pmol kg−1. 

 
Figure 3.7 Model-simulated CFC-11 in the North Atlantic (middle) along ∼24°N during 1995, 
(left) corresponding observations, and (right) model error. Units are pmol kg−1. 
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Figure 3.8 Model-simulated CFC-11 in the North Atlantic (middle) along 40°W during 1995, 
(left) corresponding observations, and (right) model error. Units are pmol kg−1. 

 

 
Figure 3.9 Model-simulated CFC-11 in the South Atlantic (middle) along ∼0° during 1995, (left) 
corresponding observations, and (right) model error. Units are pmol kg−1. 

 

Another section along the North Atlantic we have examined is the 40°W section (Figure 
3.8), which passes through the “mouth” of the Labrador Sea where it opens to the Atlantic. 
This is the location where deep penetration of CFC-11 is noted in both the observation and the 
model. The section shows a reasonable similarity between the observation and the model. The 
deepest penetration is 4000 m for the contour of 0.5 pmol kg−1 in both the observation and the 
model. The tonguelike shape in the model near 55°N shows the mode water formation and 
subduction at the base of the mixed layer. This is in close agreement with the observation. 
 A meridional section from the South Atlantic is shown in Figure 3.6. The location of the 
section is 0°W, which is close to the AJAX section as shown in Dutay et al. (2002). The 
SAMW formation is reasonable in the model with a maximum penetration depth of nearly 
1500 m. This is in good agreement with the observations. The maximum near the southern 
boundary is somewhat overestimated in the model and elongated deeper. The observation data 
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in GLODAP didn’t show enough concentration in the deep southern boundary as seen from 
the AJAX section, and the model didn’t show any high concentration deep in the southern 
boundary. 

In all the cross sections we presented here, an enhanced vertical mixing in the equatorial 
region is found in the model, especially at the section close to the American continent (or 
western part of the Atlantic Ocean). This is not obvious in the observations. The modeled 
equatorial mixing is relatively stronger than in reality, especially in the western boundary. 
This is equally reflected in the equatorial region column inventory and resulted in a large error 
there (Figure 3.5, bottom). However, the relative concentration below the observed limit in 
the equatorial region is smaller and will not contribute much to the total CFC-11 uptake in the 
models. 

3.2.2b Comparison with OCMIP-II participant models 
In this section, we compare our results with models that participated in OCMIP-2. This 

comparison will help us to demonstrate the advantages of using high-resolution offline 
models to improve the accuracy in transport calculations. This comparison is possible even 
though the models of OCMIP-2 have a wide range of resolution and vary in their behavior 
according to the physics included in each model. Any appreciable differences we see among 
these models and our offline solutions may be attributable to a number of reasons related to 
the difference in the circulation field resolved in each of these models. The ideal way to 
compare our result with an OCMIP-2 candidate would be to begin with a comparison of 
physical fields (i.e., circulation and mixing details) and then move to CFC-11. However, 
obtaining such fields and a detailed comparison with assimilated circulation that we used in 
our simulation is impractical and out of our topic. At the same time, a comparison of our 
offline solutions with CFC-11 observations has shown good agreement, which in turn shows 
that a comparison of our model results with candidate models of OCMIP-2 will provide a 
performance assessment in CFC-11 simulation without having a one-to-one detailed 
comparison of the circulation field between OCMIP-2 candidates and the offline input that we 
used in our simulation. Moreover, we have used the same surface forcing for CFC-11 as that 
of OCMIP-2 experiments, which enables us to make a direct comparison. 

We chose eight models from OCMIP-2 participants for the comparison here. This 
selection is based on referring to Dutay et al. (2002). Only those candidates that show a 
reasonable agreement with the observations are included here: Commonwealth Scientific and 
Industrial Research Organisation (CSIRO), Institute for Global Change Research, Tokyo, 
Japan (IGCR), L’Institut Pierre-Simon Laplace Coupled Model (IPSL), Lawrence Livermore 
National Laboratory (LLNL), Massachusetts Institute of Technology (MIT), National Energy 
Research Scientific Computing Center (NERSC), Princeton University experiment-2 
(PRINCE2), and Southampton Oceanography Centre (SOC; see Dutay et al., 2002). All of 
these models had been run based on the OCMIP-2 CFC-11 flux protocol from 1938 to 1997. 
We will present a quantitative comparison between our model and these models in the 
Atlantic.  

Figure 3.10 shows the zonally integrated CFC-11 column inventories in the entire 
Atlantic (100°W ∼20°E), as simulated by the candidate models of OCMIP-2, our model, and 
the corresponding observations. This provides a quantitative comparison of CFC-11 simulated 
by each of these models. The northern Atlantic ventilation process is captured by participating 
models of OCMIP-2, although the majority underestimates it. A close examination indicates 
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that our model has excellent agreement with the observations in the subduction zone of the 
northern Atlantic. The model spread is relatively larger in the northern Atlantic than in the 
Southern Ocean. Among the OCMIP-2 candidates, a double peak in the North Atlantic is 
captured only in MIT, IGCR, and NERSC, although the amplitude is almost double in 
NERSC. The other candidates do not have an obvious double peak. It is noticeable that our 
model captures these two maxima remarkably well compared to the observations. 

In the Southern Ocean, all models have reasonable performance. Also in this case, our 
model reproduces both the phase and amplitude of the observed CFC-11 inventory 
appreciably well. A minimum in CFC-11 inventories around 51°S and a secondary maximum 
around 57°S are well captured only in our model and LLNL. All other models have a wide 
range of CFC-11 inventory in the Southern Hemisphere. The deviation of NERSC from the 
mean state is too large, and the IGCR model also overestimates CFC-11 inventory in the 
Southern Ocean. 

 
Figure 3.10 Zonally integrated column inventories of CFC-11 in the entire Atlantic from the 
candidate models of OCMIP-2, our model, and corresponding observations. Units are pmol m2 
kg−1. 

 

None of the models (including ours) maintains a shallow penetration of CFC-11 that is 
bound to 70°S, except LLNL. This may be due to the inconsistent ice parameterizations 
included in the models. The NERSC model shows extremely localized high concentrations in 
the subduction zone of the SAMW region. In the equatorial region, our model overestimates 
vertical mixing as compared to the observations as well as the other candidate models of 
OCMIP-2. However, it is noteworthy that the equatorial pattern is captured by our model even 
though the mixing is exaggerated. The other candidate models of OCMIP-2 underestimate the 
vertical mixing in the equatorial region, except MIT, which shows an appreciable match of 
phase and amplitude with the observations. 

The comparison with the other models of OCMIP-2 shows that our model’s performance 
falls within the range achieved by the candidate models of OCMIP-2. These models have 
varying levels of agreement and disagreement with the observation at various parts of the 
ocean. For example, IGCR and MIT perform reasonably well in the North Atlantic but have a 
poor performance in the South Atlantic. LLNL exhibits excellent performance in the South 
Atlantic but is biased toward underestimation in the northern Atlantic. Some candidates 
exaggerate the amplitude, while others have different phases. Our model has a good 
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agreement in both amplitude and phase at the northern as well as the Southern Ocean, while it 
is exaggerated in amplitude in the equatorial region. By this way of comparison, it is difficult 
to conclude which model can most accurately simulate the observations. 

 To achieve a more quantitative comparison among these models as well as with the 
observations and also to find the skill of these models to simulate a scenario close to reality, 
we opt for a representation of model statistics as provided in Taylor (2001). Figure 3.11 shows 
the standard deviations and correlations (with the observations) of the plots given in Figure 
3.10. The radial distance from the origin is proportional to the standard deviation and the 
cosine of the angle between the radial line, and the abscissa is the correlation between each 
model and the observations. To compare the model’s performance in this way, we need a 
reference point that represents the standard deviation of observations (as seen in Figure 3.11) 
and a correlation coefficient of 1. Any point in the map is thus defined by a combination of 
standard deviation and correlation. The models with the best performance in simulating both 
amplitude and phase of observations will thus lie close to the reference point. A statistical skill 
score based on standard deviation and correlation of each model is found as that given in 
Taylor (2001), with a maximum expectation correlation coefficient of R0 = 0.99. 

 
Figure 3.11 Model std dev and correlation with reference data (GLODAP) are displayed as in 
Taylor (2001). The radial lines are labeled by the cosine of the angle made with the abscissa. The 
reference data have a std dev of 0.74. Our model has a std dev of 0.60 and a correlation coefficient of 
0.95. Skill values are given in brackets. 

 

The observation has a standard deviation of 0.74 pmol m2 kg−1. The OCMIP-2 candidate 
models spread in a standard deviation band of 0.60 to 1.62, a correlation band of 0.89 to 0.67, 
and a skill band of 0.92 to 0.48. Our model has a standard deviation of 0.60 and a skill value 
of 0.94, which is the highest skill score compared to other models shown here. However, 
some of the OCMIP-2 models have a standard deviation that is closer to the observations than 
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that of our model. For example PRINCE2, SOC, and National Center for Atmospheric 
Research (NCAR) models have better standard deviations, but their correlations are low 
compared to our model. This shows that these models simulated a more accurate amplitude of 
the north-south column inventory, but the phase mismatches. On the other hand, in our model, 
the good correlation and relatively weaker standard deviation (compared to PRINCE2, SOC, 
and NCAR) mean that the phase of the north-south Atlantic CFC-11 inventory is good, but the 
amplitude is affected. From Figure 3.10, it is obvious that the equatorial exaggeration of 
vertical mixing is the reason for this amplitude mismatch in our model. However, the skill 
measure (which is a collective measure of standard deviation and correlation) shows that our 
model outperforms the OCMIP-2 candidate models in the Atlantic with a skill score of 0.94, 
which is the highest among the models compared here. 

 

3.2.2c Error comparison with OCMIP-II participant models 
The Taylor (2001) diagram explicitly shows the correlation coefficient between the 

observed field and the model as well as their centered RMS differences, along with the ratio 
of the standard deviations of the two patterns. The centered RMS difference between the 
model and the observations is proportional to their distance apart in the same units as the 
standard deviation. This distance is 0.14 × 1010 pmol m2 kg−1 in our model. This represents 
the RMS difference of the model north–south column inventory from the observations. In our 
model, this corresponds to an error of ±8% from the observed mean of north-south CFC-11 
column inventory. Among the OCMIP-2 participant models, CSIRO and LLNL have the same 
RMSE difference as ours. The RMSE differences of NCAR and MIT are ±4% and ±9%, 
respectively, which shows that these models (including ours) have error in the amplitude of 
the north-south column inventory. In our model, this is due to the exaggeration of vertical 
mixing and the CFC-11 uptake in the equatorial region. The overall error in the tropics in our 
model is 30%. However, the observations suggest that the tropical Atlantic contains only 
18.7% of the total CFC-11 of the entire Atlantic, and thus a model error of 30% in the tropics 
means only an error of 6% in the total CFC-11 uptake. The minimum RMSE difference of 
OCMIP-2 participants is found in PRINCE2 and SOC, which have an error of ±4% from the 
mean north–south column inventory. 

 

3.2.3 Discussion and conclusion 
 It is evident from Figures 3.10 and 3.11 that our model captures the majority of the 
column inventory features of CFC-11 remarkably well and has a high skill score compared to 
the OCMIP-2 participants. Thus, it is useful to point out the reasons for this improved 
performance in our model compared to that of other candidates of OCMIP-2. The main reason 
may be the higher resolution of our model compared to the very coarse resolutions used in 
OCMIP-2. Thus, it is evident that the restriction of resolution because of the cost of 
computational time in the online models has affected the accuracy in transport, which can be 
effectively solved by adapting an offline version with reasonable ocean circulation—a real 
advantage of offline models. This conclusion is consistent with the model results of Gupta and 
England (2004). Another reason for improvement in our model may be the assimilated 
oceanic currents that we used to find the transport. Apart from the resolution, the limitations 
in the model physics also affect the performance of online simulations. Thus, by having an 
assimilated current as prior information with appreciable periodicity to represent the dominant 
mode of variability (monthly or weekly), there is a good chance to achieve high accuracy in 
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transport calculations using offline models. 
Our model results show that even though the vertical mixing and horizontal subgrid-scale 

processes are parameterized in the offline model, the accuracy present in advective 
components inherited from the assimilated field plays a potential role in improving the 
transport calculation. Together with the assimilated advection—if it is possible to provide 
other mixing coefficients from the parent model itself—the offline model could be tuned to 
get a further and more accurate transport. The accuracy of transport has a critical role in 
modeling the oceanic uptake of carbonaceous tracers. For instance, the equilibration time 
scale (time scale to reach an equilibrium between the partial pressures at the ocean–air 
interface) of CFC-11 is relatively short. Thus, vertical or horizontal transport of surface CFC-
11 to any long distances before it equilibrates locally has potential influence on the 
equilibration time scale of air–sea fluxes and hence the total uptake by the oceans. 

Because the ocean acts as a large-scale sink for carbonaceous tracers in the atmosphere, 
like anthropogenic CO2, it is vital to quantify the role of oceans on the life cycle of CO2 in the 
hydrosphere and atmosphere. Inadequate observations of parameters that are necessary for the 
estimation of air-sea exchange of CO2 and other carbonaceous tracers always force us to 
depend largely on climate models to assess the fate of these trace materials. However, the 
climate models that do this job have to undergo several compromises on computational 
resources and poorly understood carbon physics, mostly resulting in unsatisfactory estimates 
of carbon fluxes. Thus, the roles of accurate transport calculation have a significant impact on 
quantifying the oceanic sources and sinks of carbonaceous substances. For the oceans, our 
study puts forward a suggestion to depend on assimilated ocean currents and other parameters 
that are mostly close to reality to estimate the transport of trace materials with a cost-effective 
computation. 

Mikaloff Fletcher et al. (2006, 2007) and Gloor et al. (2003) have used inverse methods to 
find the oceanic sources and sinks of anthropogenic as well as natural CO2. The accuracy of 
the inversion depends solely on the accuracy of transport functions. The comparison of 
several OCMIP-2 candidate models of coarse resolution [some of these models are also used 
in inversion experiments of Mikaloff Fletcher et al. (2006, 2007)] showed notable differences 
in performance as is described in their paper. Comparing our model’s results with these 
models, as well as with the observations, shows that our model has a relatively higher skill 
score. Therefore, our model is a potential candidate for the inversion studies as used in 
Mikaloff Fletcher et al. (2006, 2007). We attribute the reasons for this accuracy in our model 
to the high resolution and to the assimilated ocean currents and hydrography that we used, 
which are still compatible with cost-effective computation. 

Certain shortcomings are present in the current configuration of our model, especially in 
the equatorial mixing. The mixed layer depth criteria in our best-suited configuration for the 
set of input data resulted in a stronger vertical mixing in the equatorial region, especially at 
the western boundary. We have investigated the reason for this behavior in the model in 
connection with its 2 times the MLD mapping in the present configuration. However, Figure 
3.3 shows that even with a scaling factor of 1, the equatorial mixing is exaggerated. The high 
shear present in the equatorial current may be the reason for the increased mixing resolved in 
KPP. The numerical diffusion, which is larger in faster current regions, can also be testament 
to this exaggerated mixing (Kantha and Clayson, 2000). 

Another drawback of the present simulation is that we limited our input data to a monthly 
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periodicity mainly because of unavailability of high-frequency data. Choosing a high-
frequency input data such as daily periodicity, if available, could improve the model’s 
performance. The growing availability of reanalysis products for ocean circulation gives us 
hope to use this model with high-frequency input data in the future. In addition, a comparison 
of simulations of this model using different assimilated ocean products will give us a clue to 
the potential biases in the model, such as exaggerated equatorial mixing. A similar 
intercomparison of transport derived using different assimilated ocean currents is indeed 
under way. Moreover, our future task is to use this model for coupled ocean-atmosphere 
inversions for CO2 fluxes and with OCMIP-2-type biogeochemical modeling experiments by 
coupling with an ecosystem model. 

 

3.2.4 Summary 
An offline passive tracer transport model is designed and discussed here. This model was 

developed at the National Institute for Environmental Studies (NIES) under the carbon cycle 
research project inside the GOSAT modeling group. The model equations for tracer evolution, 
vertical mixing, horizontal diffusion, and other subgrid-scale parameterizations are detailed. 
The model borrows offline fields from precalculated monthly archives of assimilated ocean 
currents, temperature, and salinity, and evolves a prognostic passive tracer with a prescribed 
surface forcing. The model’s performance is validated by simulating the CFC-11 cycle in the 
ocean starting from the preindustrial period (1938) with observed anthropogenic perturbations 
of atmospheric CFC-11 to comply with the OCMIP-2 flux protocol. The model results are 
compared with ship observations as well as with the results of the candidate models of 
OCMIP-2 and a performance is assessed. The model simulates the deep ventilation processes 
in the Atlantic Ocean appreciably well and yields a good agreement in the column inventory 
of CFC-11 compared to the observation. The error estimates show that the models intake of 
CFC-11 is within an overall error bar of ±8% in the Atlantic, while an exaggeration in tropical 
CFC-11 intake is noted. The spatial pattern of CFC-11 intake is well simulated in the model, 
with an overall Atlantic correlation of 0.95 compared to the observations. The statistical skill 
comparison test with the OCMIP-2 participant models shows that our model performs 
appreciably well in the CFC-11 column inventory simulation. The spatial pattern of CFC-11 
inventories in our model has a higher correlation with the observations than the OCMIP-2 
participant models. The improvements in performance of our model compared to other 
models are attributed to its higher resolution and assimilated offline inputs feeding. This 
shows a potential role in improving transport calculation in the ocean with cost-effective 
computation. 

 

3.3 Coupling of a biogeochemical cycle to OTTM 
We have coupled OTTM with a simplified one-component ecosystem model. The 

physical part of this coupled model is OTTM. In OTTM, the ocean circulation, temperature, 
and salinity are provided from a pre-calculated data archive. Here, we use forty-year’s worth 
of ocean re-analysis data sets derived from the Geophysical Fluid Dynamics Laboratory 
(GFDL). The details of the data sources and periodicity are explained in Table 3.3. 
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Table 3.3 List of various data sets, periodicity and time-span. Abbreviations: U and V: Velocities, 
T: Temperature, S: Salinity, E-P: Evaporation-Precipitation, SSH: Sea surface height TAUX and 
TAUY: surface wind speed, NHF: Net heat flux, P: Phosphate, U10m and V10m: Surface 10 m wind 
speed, SSW: Shortwave flux, PAR: Photosynthetically Active Radiation, DIC: dissolved inorganic 
carbon. 

 

Variables Data Name Time-span Periodicity Source 

U, V, T, S, MLD, E-P 

SSH 

MOM4-SIS- 

Assimilation 

1960-2004 monthly Delworth et al. (2006) ;  
Gnanadesikan et al. (2006)

SSW SOC Climatology monthly Josey et al. (1999) 

P WOA Climatology monthly Conkright et al. (2001) 

PAR SeaWifs Climatology  monthly McClain et al. (2004) 

U10m, V10m ERA-40 1960-2001 6-hourly Uppala et al. (2004) 

DIC GLODAP Climatology Annual mean Key et al. (2004) 

 

3.3.1 Carbonate chemistry model 
The chemical compartment of the coupled model handles the dissolved inorganic carbon 

(DIC) as a tracer which is in equilibrium with the atmosphere at the surface through the air-
sea gas exchange. Inside the ocean, DIC is composed of CO3

2-, HCO3
-1 and dissolved CO2. 

All these three components are treated as one tracer of DIC. This model is a solubility pump 
model as described in the protocols of the Ocean Carbon Cycle Inter Comparison Project-II 
(OCMIP-II, the document is available at http://www.ipsl.jussieu.fr/OCMIP/).  

The air-sea gas exchange depends upon a piston velocity Kw and the difference in partial 
pressure of CO2 (pCO2) between the surface ocean and the ambient atmosphere above the 
surface. Since we are primarily interested in the air-sea CO2 flux response to changing 
physical forcing, a constant atmospheric pCO2 of 354 atm (a value observed in 1990) is 
applied. The air-sea flux is formulated as GASEX = Kw(pCO2 AIR - pCO2 OCEAN). The piston 
velocity Kw is the turbulent velocity with which the gaseous CO2 enters or leaves the surface 
of the ocean according to the wind speed and CO2 solubility conditions as formulated in the 
Wanninkhof (1992). We use a gas exchange proportionality constant a=0.337. The surface 
wind speed is composed of a 10-day average of a 6-hourly squared wind speed which fully 
accounts for 6-hourly wind speed variance (u10

2 + u10
2) where u10 is the wind speed at 10 

meter above the surface. The polar ice caps are used to partially mask the air-sea gas 
exchange over the sea ice regions by applying a spatial map of ice index ranging from 0.2 to 1 
as given in the OCMIP-II. 

 

3.3.2 Ecosystem model 
The ecosystem model is the same as that used in McKinley et al. (2004). In this model, 

the net primary production in the euphotic zone is obtained from monthly maps of the 
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phosphate and light availability, and scaled it by a regional mask which stands for the iron 
limitation, grazing efficiency, or recycling of the biomass. The export production in the 
euophotic zone (0-140 m) is formulated as 

  B(z) = -(x,y) [I(x,y,z,t)/(I(x,y,z,t) + I0)] [P(x,y,z,t)/(P(x,y,z,t) + P0)]   (7) 

where, (x,y) represents the other controlling factors of the export rates. The values of the 
maximum export rate, (x,y) account for all the processes leading to export which are not 
represented by the explicit phosphate and light limitation (McKinley et al., 2004). The values 
of (x,y) should be consistent with the model's circulation and climatological nutrient fields. 
The global ocean is divided into 14 regions and the value of (x,y) for each region is defined by 
following the assumption that a given model flow field will produce an annual mean 
phosphorous distribution that is consistent with the climatological observations. The ocean 
regions for  values are given in McKinley et al. (2004) and further explanation therein. The 
regions we used is also the same as that of McKinley et al. (2004) while the individual 
regional values of (x,y) are tuned suitably for the circulation used in this study. 

The half saturation value for phosphate (P0) is 0.01 molkg-1 and that for the light (I0) is 
30 W m-2. The sinking particle flux ,F(z), is parameterized as in Dutkiewicz et al. (2004). The 
net export production is converted to an equivalent DIC consumption in the euphotic zone 
based on the Redfield ratio, RC:P = 117:1. Within the euphotic zone, the biological source-sink 
term, Sb = B(z) + F(z) and below that zone, Sb = F(z). 

In addition to the surface air-sea gas exchange, dilution of surface water DIC 
concentration by rainfall and increase in DIC concentration by evaporation are also included 
in the model. Although the model's kinematic surface boundary conditions incorporate the 
evaporation and precipitation as vertical velocity at the top model grid cell face, the virtual 
dilution of the surface layer DIC is provided as a ”virtual flux”, FWEX = (E-P)DICSURF, 
where the DICSURF is the globally average of the model surface DIC concentration. This is the 
standard gas exchange formulation of the OCMIP-II protocols. The data for the virtual fluxes 
are used from the same source of the re-analysis data. The coupled model thus have the 
following form 

   ∂DIC/∂Dt = RC:P · Sb(z) + GASEX + FWEX     (8) 

where, ∂DIC/∂Dt contains the total changes due to advection, mixing, diffusion and eddy 
induced transport. 

 

3.3.3 Data and model setup 
The physical parameters borrowed from the data are velocities (u, v), temperature, salinity, 

mixed layer depth, evaporation-precipitation, surface heat flux, surface wind stress (to drive 
vertical mixing), and sea surface height. (see Section 3.2.1).  

The data of surface wind speed for the air-sea gas exchange calculation are taken from the 
ECMWF surface wind data product (ERA-40 6-hourly, 10 m above the surface, Uppala et al., 
2004). The initial condition for DIC is taken from the Global Ocean Data Analysis Project 
(GLODAP) (Key et al., 2004). Table 3.3 summarizes all of the data sets used in this study and 
their periodicity, time-span, and respective sources. 

The model is run for the mean state of DIC (pre-run) using a monthly mean circulations 
and other physical parameters derived from the ten-year period between 1975 and 1984. This 
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data period represents the middle time of the total span of the re-analysis data. We choose this 
period for deriving the mean circulation and other physical parameters for the pre-run mainly 
because our interannual DIC simulation starts from 1980. Moreover, the mean circulation, 
temperature and salinity over a longer span (40 years) will have offsets due to climate change 
which occurred during the last few decades. Thus, a monthly mean circulation derived from 
1975 to 1984 will give us a reasonable mean state of DIC.  

The pre-run of the model is initialized with an annual mean values of DIC derived from 
the GLODAP data (Key et al., 2004). For the pre-run, the surface wind speeds and variances 
for the air-sea gas exchange are kept as monthly means that are originally taken from the 
OCMIP-II forcing data sets (available at http://www.ipsl.jussieu.fr/OCMIP/). These data are 
derived from a 5-year average of SSMI satellite monthly-squared wind speed and a variance 
of the instantaneous wind speed from the corresponding monthly period (see also README. 
satdat provided by OCMIP-II, available at http://www.ipsl.jussieu.fr/OCMIP/). 

The pre-run is carried out for 20 years using a monthly mean circulations and the surface 
gas exchange forcing that are repeated every year. The surface DIC concentration and air-sea 
CO2 flux of the model reach quasi-equilibrium states at the end of the first 10 years of the pre-
run, and the evolution of DIC and the flux continue with a minimum departure from the mean 
state thereafter. However, deeper adjustments (below 2000 m) still continue at the end of the 
20-year pre-run, because of the deep convections and remineralized DIC from the export 
production which communicates much slowly with the surface. 

The average of the last five year simulation of the pre-run is taken as the restart condition 
for the interannual simulation. The model starts from the restart condition and passes through 
the monthly data fields of the year 1980 once and then continue the run from 1980 to 1999 
using the real-time data. The model state deviates from the restart condition as soon as the 
data of 1980 is introduced and a near steady state is reached by the time model passes one 
time through the data fields of the year 1980. 

Our model setup is essentially the same as that of McKinley et al. (2004) except for a few 
points. Our model circulations and other physical parameters are taken from a re-analysis data 
set whereas in McKinley et al. (2004) those were taken from the MIT GCM simulations. Our 
physical model contains real time variability of the ocean constrained with the observations in 
the assimilation processes. The second and an important difference is that we use a full depth 
ocean whereas McKinley et al. (2004) have restored their below-1100 m DIC to the initial 
conditions. Thus our model has reasons to represents more realistic deep ventilation processes 
which might not be represented, especially in the interannual scale, in the work of McKinley 
et al. (2004). Another minor factor of difference is that our model domain extends to 85º to 
the north and south whereas it was only up to 73º in McKinley et al. (2004). 

 

3.3.4 The model air-sea CO2 flux 
The global mean CO2 flux of the model is calculated from 1980 to 1999. The global mean 

has a net sink of 1.42±0.40 PgCyr-1. This value is less than that of the McKinley et al. (2004) 
by 0.36 PgCyr-1, partially because their model domain ranges only from 73º S to 73º N. Within 
that domain, our model shows a net sink of 1.58 PgCyr-1. The global estimate of the mean 
sink generally agrees with other modeling efforts (for example Le Quéré et al. (2000), Wetzel 
et al. (2005) and observations of Takahashi et al. (2002)). 
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Figure 3.12 Mean air-sea CO2 fluxes of the model over the 1980-1999 period (molm-2yr-1). The 
positive values denote the sources. Correlation of model climatological seasonal cycle with (a) 
Takahashi (2002), (b) Takahashi (2002) corrected with SVD and (d) McK (McKinley et al. (2004)). A 
value above 0.71 and 0.58 are above 99% and 95% level of significance, respectively. 

 

The model captures the major features of the global CO2 flux such as the eastern tropical 
Pacific emissions and the high-latitude sinks with maximum amplitude in the northern 
Atlantic. Figure 3.12 shows twenty-year mean CO2 fluxes estimated by the model. The spatial 
pattern of the annual mean fluxes closely resemble with those by Takahashi et al. (2002) and 
McKinley et al. (2004). The interannual variability of the global CO2 flux in our model (figure 
not shown) follows the tropical Pacific variability associated with ENSO which is consistent 
with the observations of Feely et al. (1999) and other biogeochemistry general circulation 
models of Le Quéré et al. (2000), Obata and Kitamura (2003), McKinley et al. (2004), and 
Wetzel et al. (2005). The peak-to-peak maximum amplitudes of interannual variability of the 
global ocean and equatorial Pacific in our model are -0.35 to 0.45 and -0.25 to 0.35 PgCyr-1, 
respectively. These are slightly less than the model results of Le Quéré et al. (2000) where the 
corresponding amplitudes are 0.4 to -0.4 and -0.2 to 0.4 PgCyr-1, respectively. The standard 
deviation of the global CO2 flux in our model is 0.40 PgCyr-1 while the equatorial Pacific has 
a standard deviation of 0.36 PgCyr-1. The correlation of the equatorial Pacific interannual 
variability with the global variability is 0.77 and shows that 60% of the global variability is 
explained by the variability in the Pacific alone. The corresponding variance explained in the 
modeling results of Le Quéré et al. (2000) is 70%. The seasonal correlation of our model 
global CO2 flux with that by Takahashi (2002) is shown in Figure 3.12b. The correlation is 
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above 95% level of significance in the low-latitude and in the tropical oceans. However, there 
is a significant miss-match in the seasonal cycle in the high-latitude oceans such as the 
Southern Ocean, northern Pacific, and northern Atlantic. The correlations of these regions 
have significantly improved, especially in the case of Southern Ocean, when inverse 
correction of atmospheric CO2 data is incorporated to the Takahashi (2002) data. The result is 
shown in Figure 3.12c. The corresponding correlation of our model with McKinley et al. 
(2004) shows a very good agreement in the global seasonal cycle of CO2, although a poor 
correlation is found in the equatorial region, a region south of 70º S and east of 150º E, and in 
the northern Atlantic. The equatorial variabilities in the flux correlation might have an origin 
related to the equatorial dynamics, which are quite expectable because we use a different 
ocean circulation than that used in McKinley et al. (2004).  

 

3.3.5 Summary 
OTTM is coupled to a simple ecosystem model and a carbonate chemistry model, and the 

coupled model is used to simulate interannual air-sea CO2 flux from 1980 to 1999. The 
multiyear mean CO2 flux by the model has a net sink and is consistent with the obseravations. 
The seasonal correlation of CO2 flux by the model to the observation is statistically significant 
although a relatively poor correlation is found in some regions especially in the Southern 
Ocean. The model simulations can be constrained with observations using assimilation 
techniques and such work is ongoing. 
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Abstract 
 

We present an empirical model for the estimation of diurnal variability in net ecosystem 
CO2 exchange (NEE) in various biomes. The model is based on the use of a simple saturated 
function for photosynthetic response of the canopy, and was constructed using the AmeriFlux 
network dataset that contains continuous eddy covariance CO2 flux data obtained at 24 
ecosystems sites from seven biomes. The physiological parameters of maximum CO2 uptake 
rate by the canopy and ecosystem respiration have biome-specific responses to environmental 
variables. The model uses simplified empirical expression of seasonal variability in biome-
specific physiological parameters based on air temperature, vapor pressure deficit, and annual 
precipitation. The model was validated using measurements of NEE derived from 10 
AmeriFlux and four AsiaFlux ecosystem sites. The predicted NEE had reasonable magnitude 
and seasonal variation and gave adequate timing for the beginning and end of the growing 
season; the model explained 83–95% and 76–89% of the observed diurnal variations in NEE 
for the AmeriFlux and AsiaFlux ecosystem sites used for validation, respectively. The model 
however worked less satisfactorily in two deciduous broadleaf forests, a grass land, a savanna, 
and a tundra ecosystem sites where leaf area index changed rapidly. These results suggest that 
including additional plant physiological parameters may improve the model simulation 
performance in various areas of biomes. 

 
Keywords: Empirical model, Net ecosystem exchange, Diurnal variability, Seasonal 
variability, AmeriFlux, AsiaFlux  
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4.1 Introduction 
Simulation of atmospheric CO2 variability by atmospheric transport modeling depends 

critically on the use of terrestrial ecosystem models to accurately simulate diurnal and 
seasonal variations in terrestrial biospheric processes. Comparisons of seasonal cycles and 
their amplitudes between observed atmospheric CO2 variability and that simulated by several 
terrestrial ecosystem models based on simplified assumptions of biospheric processes have 
often shown poor agreement (e.g., Nemry et al., 1999). Often model parameter adjustment is 
necessary to improve fit with the atmospheric observations. Fung et al. (1987), for example, 
adjusted the seasonal cycle amplitude by modifying the value of the Q10 temperature 
coefficient for ecosystem respiration. 

Successful simulations of seasonal cycle have been made with more recent and 
sophisticated models, e.g., CASA (Potter et al., 1993; Randerson et al., 1997). Process-based 
models differ in their parameterization of primary production. Models based on light-use 
efficiency, such as CASA and TURC (Ruimy et al., 1996), assume a linear relationship 
between monthly net primary production (NPP) and monthly solar radiation (Monteith, 1972) 
that is limited by water availability and temperature. Although these models appear to be 
successful in seasonal cycle simulation as a whole, their extension to cover diurnal cycles 
should be accompanied by the introduction of a more realistic, non-linear relationship 
between CO2 uptake by terrestrial vegetation and solar radiation at an hourly time scale. The 
biochemical model proposed by Farquhar et al. (1980) describes the dependence of 
photosynthesis on solar radiation, with CO2 uptake rate limited by maximum photosynthetic 
capacity. This concept is used widely in land-surface schemes for meteorology and hydrology, 
such as SiB (Sellers et al., 1986) and LSM (Bonan, 1996; 1998), but is less successful in 
carbon cycle studies because of a lack of empirical data or models for describing the seasonal 
and spatial variability of the necessary parameters, such as maximum photosynthetic capacity. 
Alternative ways of evaluating biospheric processes are therefore required for the estimation 
of diurnal cycles in CO2 variability. In some cases, empirical models can fit the data more 
closely than mechanistic models (Thornley, 2002). 

For studies of the diurnal cycle of CO2 variability, long-term field measurement studies 
using the eddy covariance method have been conducted in recent years at many sites, 
covering various ecosystems around the world (Baldocchi, 2008). These sites are now 
organized into a global network, FLUXNET, and a large body of observation data is being 
accumulated. The eddy covariance method routinely provides direct measurements of net 
ecosystem CO2 exchange (NEE) between the atmosphere and the biosphere. The data 
obtained from these field measurements can be useful, especially for constructing models to 
predict the diurnal cycle of CO2 variability associated with biospheric processes, since they 
provide direct information on turbulence and scalar fluctuations at time scales from seconds to 
hours over the local vegetation canopy. 

In the present work, our focus is on constructing a model that simulates the diurnal 
variability of NEE in various ecosystems based solely on environmental forces. For this work, 
we used data from the AmeriFlux and AsiaFlux networks. 

 

 

 

― 75 ―

CGER-I092-2010, CGER/NIES



Chapter 4 An empirical model simulating diurnal and seasonal CO2 flux for diverse vegetation types and climate conditions 

 76

4.2 Materials and methods 
4.2.1 Input data 

All half-hourly or hourly CO2 flux data used were obtained from the AmeriFlux network 
(Hargrove et al., 2003). Sixty-two years’ worth of eddy covariance flux data taken from 24 
AmeriFlux ecosystem sites and covering seven major biomes in the latitudes from Alaska to 
Brazil were analyzed. The biomes consisted of six evergreen needle-leaf forests (ENF), two 
evergreen broadleaf forests (EBF), four deciduous broadleaf forests (DBF), four mixed forests 
(MF), three grasslands (GRS), two savannas (SVN), and three tundra ecosystems (TND) 
(Table 4.1). Each site was equipped with an eddy covariance system consisting of an open- or 
closed-path infrared gas analyzer and a three-dimensional sonic anemometer/thermometer. 
AmeriFlux Level 2 products, which contain non-gap-filled CO2 flux data, were used as input 
data to avoid contamination associated with gap-filling procedures. The periods analyzed for 
each ecosystem site are listed in Table 4.1. 

 
Table 4.1 List of AmeriFlux eddy covariance measurement sites analyzed in this study. Annual 
mean temperature (AMT) and annual precipitation (AP) are mean values for the period indicated. 

 
 

Half-hourly or hourly air temperature (°C), vapor pressure deficit (VPD; kPa), incident 
photosynthetic photon flux density (PPFD; μmol photon m−2 s−1), and precipitation (mm) for 

― 76 ―

Chapter 4 An empirical model simulating diurnal and seasonal CO2 flux for diverse vegetation types and climate conditions



CGER-I092-2010, CGER/NIES 

 77

individual sites were also obtained from the AmeriFlux network. For all sites, air temperature 
and precipitation data that were missing because of instrument malfunction were filled using 
the Global Surface Summary of Day (GSOD) data sets to compute annual mean temperature 
and annual precipitation. The GSOD is a product of the Integrated Surface Data provided by 
the National Climate Data Center, and includes 13 daily summary parameters over 9000 
global stations. 

 

4.2.2 Modeling approach 
To predict vegetation photosynthesis and its light response, a nonrectangular hyperbolic 

model: 

             Equation (1) 

has been widely applied (e.g., Rabinowitch, 1951; Peat, 1970), where α is the initial slope of 
the light response curve and an approximation of the canopy light utilization efficiency 
(μmolCO2 (μmol photon)−1), Pmax is the maximum CO2 uptake rate of the canopy (μmol CO2 
m−2 s−1), RE is the average daytime ecosystem respiration (μmol CO2 m−2 s−1), θ is a 
curvature parameter, and Q is PPFD. Johnson and Thornley (1984) have shown that a 
nonrectangular hyperbola predicts the integrated daily canopy photosynthesis with an 
accuracy better than 1% when it is averaged over various irradiances. More recently, this 
hyperbola has been successfully used in the gap-filling method to obtain continuous eddy 
covariance CO2 fluxes over a year, and to estimate the total annual carbon budget over 
various biomes (e.g., Gilmanov et al., 2003; Hirata et al., 2008). 

Here, we derive a simple and empirical model for predicting the diurnal variability in 
NEE over a number of biomes on the basis of the nonrectangular hyperbolic model. To apply 
the nonrectangular hyperbola, the unknown number parameters (α, Pmax, and RE in Eq. (1)) 
have to be determined, whereas θ is fixed at 0.9 following Kosugi et al. (2005) and Saigusa et 
al. (2008). To formulate individual unknown parameters, we first calculated the seasonal 
course of those parameters for every site listed in Table 4.1 by using all available daytime 
data. The values of parameters were estimated for each day by fitting the data to Eq. (1) using 
the least-squares method. To reduce poor fitting of Eq. (1) that results from the limited 
availability and noise in CO2 flux data, the parameters for each day were estimated using a 
15-day moving window. Individual parameters exhibited seasonal variations, and the 
variability and amplitude of individual parameters clearly differed among the ecosystem sites 
and biomes measured. Below we describe how we formulated the seasonal courses of three 
unknown parameters for each biome. 
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Figure 4.1 Dependence of normalized Pmax on daily mean air temperature (Ta; °C) and vapor 
pressure deficit (VPDa; kPa) over 15-day periods for seven biomes. The daily values of Pmax were 
normalized by the maximum Pmax at the site, and were then aggregated for each biome. The 
normalized values of Pmax in each grid are averages corresponding to the range of Ta and VPDa, and 
the magnitudes of these are represented in color. 

 

Table 4.2 List of biome-specific parameter values. 
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The seasonal course of Pmax was correlated with those of temperature and VPD for each 
biome, and the strength of the correlations with these environmental factors differed among 
biomes. Figure 4.1 shows the normalized Pmax under different daily mean air temperatures Ta 
(°C) and VPDa (kPa) averaged over a 15-day period, consistent with that used in the fitting of 
Eq. (1). The value of Pmax was normalized by the maximum Pmax at the site over the entire 
period analyzed. The largest values of the normalized Pmax occurred in each biome, except for 
TND, when Ta was approximately between 20°C and 25°C, and VPDa was lower than 1 kPa. 
Although scatter exists, the normalized Pmax for each biome decreased with decreasing Ta and 
increasing VPDa. On the basis of the variability in the normalized Pmax shown in Figure 4.1, 
and in the interest of reducing the number of parameters and using meteorological data that 
were readily available everywhere, we expressed Pmax as a function of the environmental 
variables of air temperature and VPD as follows: 

      Equation (2) 

where  is the potential maximum value of Pmax under unstressed conditions, and FT and FV 
denote the coefficient functions for air temperature and VPD, respectively. We used the 
following equations to express FT and FV, respectively: 

   Equation (3) 

     Equation (4) 

where Tmax, Tmin, and Topt are the maximum, minimum, and optimum temperatures (°C), 
respectively, for photosynthesis, and aFV (kPa) and bFV are constant coefficients. aFV is the 
value of VPD when FV =0.5. The parameter values of Tmax, Tmin, Topt, aFV, and bFV were 
determined for each biome by fitting the normalized Pmax to Eqs. (3) and (4) using the 
nonlinear least-squares method (Table 4.2). An example of the fitting is shown in Figure 4.2 
for ENFs. 
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Figure 4.2 Normalized Pmax in evergreen needle-leaf forests (ENF) under different conditions of 
Ta (°C) and VPDa (kPa). The solid circles corresponds to grids shown in Figure 4.1, and the response 
surface fit of Eqs. (3) and (4) using the nonlinear least squares method. 
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To formulate  in Eq. (2), all daily Pmax obtained by fitting Eq. (1) with observed CO2 
flux data were divided by FT and FV, and then the annual maximum value of unstressed Pmax 
was selected for each ecosystem site from among the data observed under conditions when Ta 
was ±5°C in Topt. To avoid uncertainty in the value of Pmax due to random flux measurement 
error, a computed unstressed maximum Pmax was averaged for the 7-day period around the 
maximum day. This value was defined as . Next,  was approximated as a function of 
annual NPP, assuming that the maximum value of Pmax was proportional to the annual NPP. 
Annual NPP (g C m−2 y−1) for each site was estimated using the Miami model (Lieth, 1975), 
as follows: 

  Equation (5) 

where AMT is annual mean temperature (°C) and AP is annual precipitation (mm). The 
unstressed maximum Pmax (i.e., ) computed from the observed CO2 flux data increased 
substantially with increasing NPP (Figure 4.3). This  dependence on NPP was found for 
all biomes examined.  was defined as follows: 

     Equation (6) 

where aPM (μmol CO2 m−2 s−1) and bPM ((g C m−2 y−1)−1) are constant coefficients empirically 
determined for each biome by the least-squares method (Table 4.2). 
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Figure 4.3 Relationship between annual NPP and unstressed maximum Pmax in evergreen needle-
leaf forests. Sites are indicated as follows: open squares, UCI-1930 burn; solid diamonds, UCI-1850 
burn; solid circles, Duke Forest loblolly pine; open triangles, Howland forest; open circles, Metolius; 
and open diamonds Slashpine-Donaldson, for each year. The solid line is the regression curve. The 
square of the correlation coefficient R2 was determined by the least squares method. 
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Figure 4.4 Relationship between bin-averaged Pmax and initial slope α in grassland. Sites are 
indicated as follows: open squares, Duke forest open field; solid circles, Brookings; and open circles, 
Walnut River Watershed. The solid line is the regression curve, and error bars represent standard 
deviation from the mean. 

 

The initial slope α in Eq. (1) shows the complicated seasonal course of the light response 
curve and of Pmax, as shown in previous studies (e.g., Gilmanov et al., 2003). Owen et al. 
(2007) have shown that α can be expressed as a linear function of canopy CO2 uptake capacity. 
Similarly, we found that seasonal variation in α was correlated with that in Pmax (Figure 4.4). 
Therefore, we defined α as a linear function of Pmax: 

      Equation (7) 

where aIni and bIni are also constant coefficients empirically determined for each biome by the 
least-squares method (Table 4.2). 

RE is the sum of autotrophic plant respiration and heterotrophic soil respiration, and is 
usually expressed as a function of soil temperature (e.g., Falge et al., 2001). It has been 
further argued that RE varies with differences in short- and long-term temperature 
sensitivities (Reichstein et al., 2005), the start of the wet season and the timing of rain events 
(Xu and Baldocchi, 2004), differences in temperature sensitivities among ecosystem sites, 
even in the same biome (Gilmanov et al., 2007), and photosynthetic rate (Sampson et al., 
2007). Accordingly, we can expect that seasonal variation in RE is in part site-specific, so 
universal attributes are difficult to formulate with a single equation. However, for application 
over large areas covering numerous biomes, a simple model driven by limited input data is 
required. We therefore used a traditional exponential relationship between RE and 
temperature as: 

      Equation (8) 

where REref is the ecosystem respiration rate (μmol CO2 m−2 s−1) when Ta=10°C, and Q10 
represent the temperature sensitivity of RE. The values of REref and Q10 were empirically 
determined for each biome by fitting all available RE data, estimated in the fitting of Eq. (1), 
to Eq (8) using the least-squares method (Table 4.2). 

To summarize the approach used for modeling diurnal variations in NEE presented in the 
section above, all parameters required to operate the model involve only four variables: air 
temperature, VPD, annual precipitation, and PPFD. In applying the model, the parameters 
Pmax and α in the nonrectangular hyperbola are estimated by using Eqs. (2) and (7) for each 
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day, whereas the value of  in Eq. (2) is determined for each year using Eq. (6). Hence, 
diurnal variation in gross primary production (GPP) – the first term on the right-hand side in 
Eq. (1) – is attributed to changes in the diurnal course of PPFD, as obtained from local 
observations. On the other hand, RE is estimated for every half-hour or hourly time step, both 
during the day and at night, with local observed air temperature data in place of Ta in Eq. (8). 
This assumes that the half-hour or hourly temperature response of RE is the same as that in 
the 15-day period, the temperature of which was used as the representative mean temperature 
to determine the empirical coefficients in Eq. (8). In general, the temperature response of RE 
is determined using nocturnal eddy covariance CO2 flux data, and this nocturnal temperature 
dependence is extrapolated to daytime (e.g., Goulden et al., 1996; Falge et al., 2002). 
However, nocturnal eddy covariance surface fluxes calculated using typical averaging times 
of about 30 min generally exhibit large scatter because of measurement error by mesoscale 
motion, since the cospectral gap, which separates turbulence and mesoscale contributions, is 
commonly located at a time scale of a few minutes or less during the nocturnal period (e.g., 
Vickers and Mahrt, 2003). Therefore, we extrapolated the daytime temperature dependence of 
RE to the night-time dependence (e.g., Suyker and Verma, 2001; Gilmanov et al., 2003). 

 

4.2.3 Validation data 
To examine model validity, we used higher-quality Level 4 products of 10 AmeriFlux 

ecosystem sites (Table 4.3). Only the data not used in model construction were selected here. 
Half-hourly air temperature, VPD, and annual precipitation, used as input data to operate the 
model, and variability in observed NEE were obtained from Level 4 products, while PPFD 
data were obtained from quality-checked Level 3 products, since Level 4 does not contain 
PPFD data. 

Table 4.3 List of AmeriFlux eddy covariance measurement sites used for validation. 

 
 

We also ran the model using the AsiaFlux network data (Fukushima, 2002) to check the 
simulation performance of the model in regions other than North America. For this check, 
data from four selected sites, which are located in ENF, EBF, DBF, and MF, were used. 
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4.3 Results and discussion 
4.3.1 Variations in parameters among biomes 

We examined the relationships between estimated annual NPP and unstressed maximum 
Pmax at all sites (Figure 4.5a). Increasing NPP was correlated with increasing unstressed 
maximum Pmax, regardless of the biome type. Since NPP is estimated using annual mean 
temperature or annual precipitation, this result suggests that canopy assimilation capacity, to a 
large degree, depends on temperature and water conditions at the measurement sites. The NPP 
response of the unstressed maximum Pmax varied among biomes: the unstressed maximum 
Pmax in TND ecosystems was most sensitive to NPP, and that in DBFs was least sensitive 
(Table 4.2 and Figure 4.5a). The low values of R2 may be mainly associated with the limited 
amount of available data, and additional datasets covering various ranges in temperature and 
precipitation would improve the estimate of unstressed maximum Pmax. 
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Figure 4.5 Distributions of three parameters for seven biomes. (a) Same as Figure 4.3, but for all 
biomes analyzed, (b) relationships between Pmax and α, and (c) between temperature and RE. Red: 
evergreen needle-leaf forests (ENF); green: evergreen broadleaf forests (EBF); blue: deciduous 
broadleaf forests (DBF); magenta: mixed forests (MF); light blue: grass lands (GRS); black: savanna 
(SVN); and orange: tundra (TND). 
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We plotted regression lines of α, estimated as a linear function of Pmax, for every biome 
(Figure 4.5b). At the leaf level, previous studies (e.g., Ehleringer and Björkman, 1977; 
Ehleringer and Pearcy, 1983) have shown that α is nearly universally the same among 
unstressed plants. At the canopy level in the current analyses, however, for the seven biomes 
showed clear seasonal variations; these may result from seasonal changes in the canopy 
including physiological development and changes in leaf area index (LAI). A remarkable 
point in Figure 4.5b is the similarities in the correlation between Pmax and α for all biomes 
analyzed. This result suggests that the relationship between Pmax and α may be universal, 
regardless of biome type. A similar result has been reported by Owen et al. (2007). However, 
little information is available on the physiological mechanisms behind the general relationship 
between α and Pmax, and the similarities in the correlation between α and Pmax may, in part, be 
the result of poor fitting in Eq. (1). In the following analyses we therefore used the individual 
regression lines estimated for each biome (see Table 4.2). 

The relationships between temperature and RE for the seven biomes are shown in Figure 
4.5c. The sensitivities of RE to temperature varied among biomes. SVN had the highest 
temperature response (Q10=3.36), and the lowest response was found in TND (Q10=1.49) 
(Table 4.2). Tjoelker et al. (2001) reported that the Q10 value is not constant and declines with 
increasing temperature for various species, and they represented this fraction in Q10 as a 
function of temperature. In addition, Curiel Yuste et al. (2004) found that the fraction in Q10 
for soil respiration also depends on seasonal patterns of plant activity, such as changes in LAI. 
Consideration of this seasonality in Q10 may improve RE estimation in the model; however, it 
would require further investigation of the relationship between the seasonal Q10 course and 
environmental factors. In this study, therefore, simple temperature dependence and constant 
Q10 values estimated for each biome were used to represent the diurnal variations in RE at all 
ecosystem sites. 
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Figure 4.6 Seasonal course of weekly averaged Pmax at (a) the Duke Forest site, ENF, in 2004; (b) 
the Santarem site, EBF, in 2003; (c) the Bartlett site, DBF, in 2004; and (d) the mature red pine 
site, MF, in 2004. The dashed line with closed circles represents Pmax estimated from the observed 
data, and the solid line with open circles is Pmax predicted using the proposed model. DOY=day of 
year. 
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Before comparing the observed and predicted diurnal variations in NEE, we compared the 
seasonal changes in Pmax (Figure 4.6) and α (Figure 4.7) computed by the model with the 
observed changes. Individual points in the graphs are the weekly averaged values of 
parameters. The seasonal cycle amplitudes of Pmax and α at the Duke Forest site, an ENF, 
were larger than those at the other sites. The Santarem site, an EBF, had large values with 
small amplitudes year round. The results for the DBF and MF sites clearly reflected the 
existence of both growing and non-growing seasons in a year, while the start and end times of 
the growing season in the mature red pine site are not shown in the figures because of a lack 
of data. In contrast, variability of Pmax and α was always observed at the evergreen sites. 
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Figure 4.7 Same as Figure 4.6, but for α. 

 

The seasonal courses of the modeled Pmax and α, and the magnitudes of these two 
parameters, showed good agreement with observational data from the Duke Forest site. On 
the other hand, the model did not account for the seasonality in two parameters at the 
Santarem site. Small variations in temperature and VPD at the site throughout the year 
resulted in a smooth and small amplitude in parameters estimated by the model. However, the 
model captured mean magnitudes of parameters when compared with observed values. For 
DBF and MF sites, the model captured the seasonality of Pmax and α, and the approximate 
timing of the start and end of ecosystem productivity, but overestimates of Pmax were found at 
the Bartlett site. This overestimation of Pmax during the growing season is due to the 
overestimated  in Eq. (2), which was estimated from the annual NPP computed using the 
Miami model. Additional data from new sites may lead to an alteration of the constant 
coefficients empirically determined for individual parameters. 

 

4.3.2 Variations in NEE 
Next, to demonstrate the capability of the proposed model, we ran the model for 10 

AmeriFlux ecosystem sites with data for a year not used in the model development (Table 
4.3). Variations in half-hourly NEE were calculated for all sites during the entire period for 
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which input meteorological data were available (Figure 4.8). At the Slashpine-Donaldson site, 
in an ENF, net CO2 uptake was observed during daytime year round, but at the Howland site 
in an ENF, NEE was very close to 0 μmol CO2 m−2 s−1 during the period between the end of 
the year and spring. The model successfully predicted these seasonal variations in NEE; in 
addition, it predicted the diurnal variations, such as when NEE becomes positive or negative, 
for both ENF and EBF sites. 

 
Figure 4.8 Diurnal and seasonal patterns of observed (left) and predicted (right) NEE at 10 
AmeriFlux ecosystem sites. The magnitudes of half-hourly NEE are represented by colors. The blank 
spaces in the figure, such as the period between DOY 1 and about DOY 100 for the UCI-1930 site, are 
due to gaps in NEE and meteorological data. 

 

On the other hand, the model underestimated the length of the net CO2 uptake periods at 
the Missouri Ozark and Brookings sites (DBF and GRS, respectively), and did not predict the 
low observed negative NEE during the daytime in winter (Figure 4.8). This is because net 
CO2 uptake was observed at both sites, even in winter when Ta < 0°C, while the minimum 
temperatures for photosynthesis in this model were set to 1°C for DBF and 3°C for GRS 
(Table 4.2). Burba et al. (2008) reported that CO2 flux measured with an open-path gas 
analyzer can yield unreasonable CO2 uptake values under low-temperature conditions, due to 
heating of the instrument body. Differences in NEE between the observations and the model 
during the winter may result partly from this problem. 
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Table 4.4 Slopes (a), intercepts (b), and R2 values of regression lines, y=ax+b, between the 
observed and modeled NEE, and the number of observations (N) at 10 AmeriFlux sites. The y-
axis values are model predictions and the x-axis values are the observations. all represents the values 
calculated from all available half-hourly NEE data, and 10 day the values from NEE averaged at half-
hourly intervals over 10-day periods. 

 
 

Overall, the predicted diurnal and seasonal patterns of CO2 uptake and release agree with 
the observed data, except for the SVN at the Audubon Research Ranch and the TND at the 
Barrow site. For SVN and TND, the model failed in the prediction of NEE variations, 
especially for SVN. The errors for these two biomes will be revisited later in this section. The 
degree of model prediction for half-hourly variations in the observed NEE was evaluated by 
regression analysis. At individual sites, the values of R2, slope, and y-intercept were between 
0.55 and 0.84, 0.59 and 0.90, and −2.07 and 0.74, respectively (Table 4.4), when all available 
half-hourly NEE data were used. The model explained only 55% of the half-hourly variations 
in NEE at the Missouri Ozark site (N=17468), but explained 84% of the NEE variations in the 
UCI-1930 burn site (N=3259). These results suggest that differences exist between predicted 
and observed NEE, and that the degree of agreement is site-dependent. However, the 
observation records often contain noise that, to some extent, is due to measurement error. To 
reduce the influence of measurement error and smooth the variability in NEE, the observed 
and predicted NEE data were averaged for each half-hourly interval over 10-day periods. 

The model performance improved considerably when the 10-day averaged half-hourly 
NEE variations were used (Table 4.4 and Figure 4.9). At six forest sites, except the Missouri 
Ozark and Brookings sites, the model provided acceptable values of R2, ranging between 0.83 
and 0.95. The slope of the regression line was 0.63 at the Howland forest site, but this small 
slope value is partly attributable to model underestimation of RE at night. Indeed, the slope of 
the regression line was improved to 0.72 at the Howland forest site when only daytime NEE 
data were used. Nighttime RE will be discussed in the next subsection. 
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Figure 4.9 Comparisons between half-hourly variations in observed and predicted NEE, 
averaged over 10-day periods, at 10 AmeriFlux ecosystem sites. The open circles represent NEE, 
solid lines are regression lines, and dashed lines are y=x. 

 

In contrast to the six forest sites described above, the model explained only 65% of 10-
day averaged half-hourly NEE variations at the Missouri Ozark site. A steep net uptake of 
CO2 was observed at this site after DOY 120 in 2007, and this net uptake rapidly decreased 
around DOY 220 (Figure 4.8). However, the model predicted smooth net uptake over the 
period between DOY 60 and 330, which resulted in large differences between observed and 
predicted NEE, as shown in Figure 4.9. The rapid changes in amplitude of diurnal NEE 
variations during the growing season may be mainly associated with the rapid changes in LAI. 
Moderate Resolution Imaging Spectroradiometer (MODIS) MOD15A2 products indicated 
that LAI increased from 0.9 on DOY 121 in 2007 to 3.7 on DOY 129, and decreased from 4.2 
on DOY 209 to 2.2 on DOY 225, and these drastic variation in LAI seem to be consistent 
with those in NEE. 

The low value of R2 at the Brookings site (R2=0.65) is attributed, in part, to the low CO2 
uptake observed from DOY 200 to DOY 260 (Figure 4.8). A daytime maximum NEE of 
−11.3 μmol CO2 m−2 s−1 was observed for DOY 171–180, but daytime NEE decreased to −3.2 
μmol CO2 m−2 s−1 for DOY 221–230, and increased again to −7.6 μmol CO2 m−2 s−1 for DOY 
261–270. One possible explanation for the low negative NEE observed in this period is 
disturbance such as grazing and mowing. Grazing intensity markedly affects aboveground 
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biomass (e.g., Cao et al., 2004) and can thus cause variations in ecosystem productivity. 
However, the MOD15A2 products did not show drastic changes in LAI during the period 
from DOY 200 to 260; thus, this pattern remains to be explained.  

Daytime NEE observed at the Audubon and Barrow sites varied during the growing 
season (Figure 4.8). High CO2 release was observed at both sites during the daytime around 
DOY 180, but NEE changed to net CO2 uptake a few weeks later. At the Audubon site, 
analysis of the observation data revealed that the duration of the assimilation period was 
narrowly restricted to about 100 days, and the seasonal patterns of the physiological 
parameters were very sharp. These processes were less sensitive to changes in temperature 
and VPD than in other biomes. Leuning et al. (2005) have shown that the productivity of a 
SVN ecosystem is controlled almost exclusively by the amount and timing of rainfall during 
the wet season. Ma et al. (2007) similarly noted that both photosynthesis and respiration 
processes in SVN depend on the amount of seasonal precipitation. These previous studies 
suggest that precipitation is the dominant factor controlling SVN ecosystem productivity 
under drought conditions. Figure 4.10 shows the seasonal courses of LAI from the MOD15A2 
products and daily precipitation at the Audubon site in 2003. LAI was nearly constant, 
ranging from 0.2 to 0.3, during the dry period before DOY 190, but rapidly increased 
following the rainfall events that occurred frequently after DOY 192. An LAI of 0.3 on DOY 
193 increased to 0.8 on DOY 209. Figures 4.8 and 4.10 clearly show that plant development 
and CO2 gas exchange at the Audubon SVN site are mainly limited by water stress, as 
discussed by Leuning et al. (2005) and Ma et al. (2007). 

For the Barrow site, LAI data for 1999 were not available from the MOD15A2 products, 
and the relationship between LAI and rapid changes in NEE could not be examined. However, 
Harazono et al. (2003) reported that photosynthetic activity on the flooded Barrow TND is 
immediately observed after snowmelt, which strongly influences the rapid development of 
TND vegetation. Although further investigation using local observation data is required, 
drastic changes in NEE at the Barrow site, shown in Figure 4.8, could be explained by the 
seasonal course of LAI at the site. 
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Figure 4.10 Seasonal courses of LAI, from the MOD15A2 for the areas surrounding the 
Audubon Research Ranch site, and daily precipitation in 2003. Open circles represent LAI and 
bars precipitation. 

 

Despite the simplicity of the proposed model and its basis in empirical regression 
methods driven by four environmental parameters, it performed well for half-hourly 

― 89 ―

CGER-I092-2010, CGER/NIES



Chapter 4 An empirical model simulating diurnal and seasonal CO2 flux for diverse vegetation types and climate conditions 

 90

variations in NEE over long periods, particularly for forest biomes. These results indicate that 
the nonrectangular hyperbola with biome-specific seasonality of physiological parameters can 
be applied to various biomes to predict diurnal variations in NEE. However, at some of the 
sites with very rapid changes in LAI, there was poor agreement between observed and 
predicted NEE. Because the proposed model does not use any plant physiological information 
to estimate diurnal variations in NEE, the model cannot predict rapid changes in NEE 
associated with changes in LAI. Yuan et al. (2007) developed a light-use-efficiency model 
using information from a normalized difference vegetation index (NDVI) that was able to 
predict seasonal variability in GPP in GRS and SVN biomes. Similarly, Leuning et al. (2005) 
estimated seasonal variability in a SVN during the wet season using MODIS data. These 
remote-sensing data products respond directly to changes in overall canopy conditions such as 
LAI and canopy structure. For future studies, these data may be useful for further 
improvement of the proposed model. 

 

4.3.3 Nocturnal RE 
As mentioned above, the model uses the response of daytime ecosystem respiration to 

temperature to estimate variability between daytime and nighttime RE over the entire period. 
To demonstrate the ability of the model to predict RE variability, we show the observed and 
modeled seasonal course of monthly averaged nocturnal RE at the Howland and Donaldson 
sites (ENF) and the Missouri Ozark site (DBF), for which nocturnal RE data are available 
over the entire period (Figure 4.11). The model captures the seasonal cycle of nocturnal RE at 
the Donaldson and Missouri Ozark sites, but the computed amplitudes are somewhat smaller 
than those of the observation data. For these two sites, the model slightly underestimates RE 
in summer; the difference between the observations and the model is approximately 1.7 μmol 
CO2 m−2 s−1. This discrepancy could be attributed to the simplifying approach of the model. In 
the interest of constructing the model as simply as possible, RE variability over a year was 
introduced using a single equation as a function of temperature for each biome, regardless of 
differences in soil conditions and plant developmental stages. Sampson et al. (2007), for 
example, demonstrated that there is considerable variability in the temperature dependence of 
soil respiration associated with seasonal differences in photosynthesis. However, to avoid 
complexity and obviate the need to obtain additional information on the mechanics of the 
relationship between RE and photosynthesis, the model does not account for the influence of 
these physiological activities on RE. On the other hand, as shown by the large error bars in 
Figure 4.11, it is also clear that the nocturnal eddy covariance data provide large scatter 
associated with weak turbulence. This noise is mainly due to flux sampling errors, which may, 
in part, be the cause of the difference between the observed and predicted RE. 
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Figure 4.11 Seasonal course of monthly averaged nocturnal RE at the Howland ENF site in 2001, 
the Donaldson ENF site in 2001, and the Ozark DBF site in 2007. A dashed line with open circles 
represents observed data, and a solid line with closed diamonds is the model data. Error bars represent 
the standard deviation from the mean. 

 

In contrast to the Donaldson and Missouri Ozark sites, modeled nocturnal RE was clearly 
much lower than observed nocturnal RE at the Howland site during the growing season. The 
model predicted an average nocturnal RE of 2.2 μmol CO2 m−2 s−1 in July, while the observed 
data were 7.8 μmol CO2 m−2 s−1. Air temperature at the Howland site was generally lower 
than that at the Donaldson site year round, which resulted in the lower predicted RE at the 
Howland site, since the proposed model estimates RE using the same temperature response 
for the same biome. However, higher nocturnal RE observed at the Howland site during the 
growing season compared to that at the Donaldson site led to the model being unable to 
predict this site-specific variability in RE. This high observed nocturnal RE at the Howland 
site may, in part, be due to carbon richness of the soil, although no detailed evidence exists to 
support this proposal. It is important to be aware of the abovementioned problems when 
computing RE variability using the model. 

 

4.3.4 Application to AsiaFlux ecosystems 
To validate the applicability of the proposed empirical model, constructed with the 

AmeriFlux data sets, to other regions, we applied the model to data obtained from the 
AsiaFlux network. Details of individual ecosystem sites can be found in Table 4.5. All half-
hourly or hourly CO2 fluxes were measured at four forest sites using the eddy covariance 
method. Micrometeorological data such as air temperature and PPFD were also obtained from 
the AsiaFlux network. The ecosystem-specific parameter values, such as Tmax in Eq. (3) and 
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aFV in Eq. (4), from the AmeriFlux network listed in Table 4.2 were used without any 
modifications to estimate variations in half-hourly or hourly NEE in the AsiaFlux forest sites. 

 
Table 4.5 Same as Table 4.1, but for AsiaFlux eddy covariance measurement sites analyzed. 
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Figure 4.12 Same as Figure 4.9, but for four AsiaFlux ecosystem sites. 

 

Figure 4.12 shows comparisons between the observations and model results of 10-day 
averaged half-hourly or hourly NEE variations at each site, as in Figure 4.9. Overall, the 
model gave reasonable predictions of NEE variation during the daytime CO2 uptake period, 
although scatter was rather large at the Mae Klong DBF site. The values of R2 at three sites, 
apart from the Mae Klong site, ranged from 0.76 to 0.89, which are comparable to the results 
obtained using the model on the AmeriFlux sites. This result suggests that the environmental 
forces used in this model are critical determinants of photosynthesis in various biomes, and 
that the biome-specific responses to environmental forces, determined by the AmeriFlux data, 
may be applicable to other regions. However, it is evident that there was a discrepancy 
between observed and predicted nocturnal RE, and that the model produced systematic 
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underestimates. Unfortunately, this study was unable to generalize the variation in RE in 
response to temperature; therefore, accurate modeling of RE is necessary to substantially 
improve the model’s simulation of long-term diurnal CO2 exchange. 

 

4.4 Conclusions 
We explored a simple approach to predicting diurnal variations in NEE over seven 

biomes and proposed an empirical model based on the use of a nonrectangular hyperbola and 
eddy covariance flux data obtained from the AmeriFlux network. Physiological parameters in 
the nonrectangular hyperbola – Pmax, α and RE – clearly exhibited seasonal variations. While 
these seasonal variations were complex, Pmax and α generally showed a dependence on 
temperature and VPD, and the degree of this dependence varied among biomes. The study 
expressed the seasonality in parameters as a function of only environmental variables – air 
temperature, VPD, and precipitation – for each biome, and diurnal variability in NEE was 
predicted using these biome-specific parameters together with PPFD. The proposed model 
successfully predicted the diurnal variability of NEE for almost all forest biomes in the 
AmeriFlux network over the entire annual observation period. However, the model was 
unable to account for drastic changes in the magnitude of NEE and CO2 uptake and release 
associated with rapid changes in LAI that were mainly observed in SVN and TND ecosystems. 
The model demonstrated acceptable performance for the AsiaFlux ecosystem sites, although 
further refinement is needed for RE. Therefore, the approach used in this study should be 
applicable to many other regions. Adjustment of the methodology used in parameter 
estimations, application of remote-sensing products, and subdivision of the biome types 
would further improve the precision of the model. 
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Abstract 
 

We investigated the utility of Greenhouse gases Observing SATellite (GOSAT) column 
CO2 observations in surface CO2 flux estimation. We addressed two key issues in carbon flux 
estimation from satellite data: (1) reduction of the CO2 flux uncertainty and (2) bias in the 
constrained surface fluxes. Our results showed that GOSAT data with 1.7 ppm precision 
(monthly mean, land observation only) had the same utility as observational data from the 
existing surface network. By adding satellite observations with 2.5 ppm single-shot precision 
and a randomly distributed retrieval bias of 1 ppm, it was possible to reduce the mean 
regional flux uncertainty by approximately 30%. Unbiased data with 2.5 ppm single-shot 
precision (0.8 ppm for the monthly mean) halved the flux uncertainty. The aerosol-dependent 
bias in satellite data with 1 ppm mean variance led to significant absolute errors in the surface 
CO2 fluxes, highlighting a need for the accurate detection and rejection of biased data.   
 
Keywords: CO2 flux estimation, CO2 flux uncertainties, GOSAT column-averaged CO2, 
Surface flux biases 
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5.1 Introduction 
Several studies have estimated the utility of satellite CO2 data in constraining surface CO2 

fluxes (Rayner and O’Brien, 2001; Houweling et al., 2004; Miller et al., 2007; Chevallier et 
al., 2007). In these studies, the utility of satellite measurements was investigated using 
moderate-resolution inverse modeling (inverting approximately 20-100 regions) (Rayner and 
O’Brien, 2001; Pak and Prather, 2001; Rayner et al., 2002; Patra et al., 2003; Maksyutov et al., 
2003) and assimilation-type inverse models at grid-size resolution (Baker et al., 2006; 
Chevallier et al., 2007). Rayner and O’Brien (2001) showed that monthly averaged column 
data precision greater than 2.5 ppm on an 8°  10° footprint is needed to reach the same 
performance as the existing surface network.  

Miller et al. (2007) recently conducted a detailed investigation of the requirements 
necessary for CO2 flux uncertainty reduction in observations of the Orbiting Carbon 
Observatory (OCO) satellite. The influence of perturbed pseudo-observations on CO2 flux 
uncertainties was also evaluated for the OCO (Chevallier et al., 2007). However, the precise 
requirements and observational impacts of the flux inversion depend on observation 
frequency and accuracy, which are unique to each satellite.  

We used an established inverse model setup that divides the globe into 66 regions to 
evaluate the utility of column-averaged CO2 retrieved from spectra in the shortwave infrared 
(SWIR) band of the Greenhouse gases Observing SATellite (GOSAT). We compared our 
GOSAT results with estimates from other satellites (Rayner and O’Brien, 2001; Houweling et 
al., 2004; Miller et al., 2007; Chevallier et al., 2007) and found that GOSAT provided 
effective CO2 flux uncertainty reduction, with a comparable utility to the other satellites. We 
also compared our results with the inversion flux uncertainties of the surface measurement 
network.   

 

5.2 Materials and methods  
We were interested in two GOSAT data inversion issues: (a) CO2 flux uncertainty 

reduction and (b) the bias in fluxes caused by bias in the observational data. As in many linear 
inverse problems, the estimated uncertainties of fluxes depend only on the observational 
errors, not on the data themselves (Rodgers, 2000). For issue (a), we used unbiased data and 
GOSAT observations with different random errors. For issue (b), we simulated the bias in the 
total column CO2 with more realistic random errors (to be used as the “weight” of perturbed 
observations).  

To complete our estimation, we needed to make a number of further steps. First, we 
simulated the global distribution of total column CO2 in a 7.5°  7.5° footprint over a monthly 
timescale (aggregated from 4-hourly simulations) in 2005 and simulated the surface network 
observations. Then, we assigned bias and random errors to all total column CO2 observations 
(from both the surface network and satellite). Finally, we estimated the monthly mean CO2 
surface fluxes, and their uncertainties, using a 66-region Bayesian inverse model.  

 

5.2.1 Total column CO2 observations and errors 
The GOSAT CO2 observations simulated here will be acquired every five seconds in the 

nadir mode (Yokota et al., 2008). The GOSAT observing strategy is to observe CO2 column-
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averaged concentrations under cloud-free conditions, with little disturbance from aerosols and 
thin clouds. Thus, only approximately 1000 observations per day will be used in the CO2 
retrieval.   

To retain integrity, we simulated both the concentrations of CO2 at surface stations and 
the global distribution of total column CO2 from GOSAT in 2005 using a transport model, 
with climatological CO2 fluxes obtained from the inverse model (Maksyutov et al., 2007). 
Following the procedure described by Patra et al. (2003), we used the global transport model 
developed at the National Institute for Environmental Studies (NIES) and later improved 
jointly at the Frontier Research System for Global Change (FRSGC) and Tohoku University. 
Details of the model configuration and performance analysis can be found in a validation 
paper (Maksyutov et al., 2008b). We used reanalysis wind data from the National Centers for 
Environmental Prediction (NCEP) at 2.5 resolution. 

To simplify the inverse modeling procedure, the satellite data were aggregated to monthly 
mean values in 7.5º × 7.5º grid boxes. The total column CO2 was simulated for every month 
of 2005, limited to observations over land only. As an example, Figure 5.1a shows the total 
column CO2 distribution in July.  

 

 

 

 

 

 

 

 

 
                                  (a)                                                                                   (b) 

Figure 5.1 Total column CO2 and errors (in ppm) for July 2005, with 1.8-ppm error for the 
monthly mean value (σsyst  = 1 ppm). 

 

We simulated two total column CO2 error types, bias and random error, and assumed that 
the bias depended on the aerosol optical thickness (AOT) and surface albedo. We used the 
relationship between the delta column CO2 albedo and AOT (see Houweling et al., 2004, 
Figure 5.4), global monthly maps of aerosol optical depth measured by the Multi-angle 
Imaging Spectrometer (MISR) (Diner et al., 2005), and global albedo maps at 1.64 μm with 
7.5º  7.5º horizontal resolution derived from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) (Gao et al., 2005) to simulate the distribution of bias for every 
month in 2001. Following Houweling et al. (2004), we constructed an empirical relationship 
among bias, albedo, and AOT. The MODIS-derived albedo data are available at 
http://modis.gsfc.nasa.gov/. Then, we estimated the sensitivity of the fluxes obtained by the 
inverse model to the biased input data. Figure 5.2 shows the distribution of simulated bias for 
July 2005.  
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Figure 5.2 Bias (ppm) for July 2005 (maximum value 3.9 ppm, minimum value -1.3 ppm). 

 

As proposed by Maksyutov et al. (2008b), the satellite data uncertainty σtotal (1) consisted 
of a random part, which could be reduced by increasing the number of independent 
observations N , and a systematic part σsyst, which could involve a concentration retrieval 
procedure (Yokota et al., 2008) or a clear-sky bias (Corbin and Denning, 2006). Here, we 
distinguish the absolute bias in the data due to aerosols from the systematic part of the 
observational uncertainty σsyst, which is a part of σtotal. We assumed that the random part was 
due to errors in the CO2 column retrievals σret and errors caused by atmospheric variability 
(Gurney et al., 2002) of CO2, σRSD, which also included the transport model error.  

In our model, the systematic part of the error was not reduced by increasing the number of 
observations. It was composed of the spatial, temporal, and representation biases in the 
concentration retrieval from the GOSAT SWIR spectra. The total column error was given as 

N
RSDret

systtotal

22

.
 

 .  (1) 

The monthly mean number of successful observations N in our estimates was based on the 
estimated probability of cloud-free sky Pcsr along the GOSAT track and on the H-ratio of the 
number of data points with acceptable signal-to-noise ratios (SNRs) to all observational data 
within a grid box: 

1000
HPNN csr .  (2) 

H varied from 0 to 100% (see Figure 5.3). The estimated climatology of Pcsr was based on 
data from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO) (Winker et 
al., 2006; Eguchi and Yokota, 2008) during a period from June 2006 to August 2007 (Figure 
5.4).  
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Figure 5.3 Ratio HH of data (%) with acceptable SNRs to all observational data within a 7.5°  
7.5° grid box in July 2005. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.4 Cloud cover (%) measured by CALIPSO in July 2005. 

 

 

The σtotal should be considered as total column CO2 uncertainty. After aggregation, the 
random part of the observational errors (the second term in (1)) was reduced to 0.8 ppm on 
average, assuming a single-shot retrieval error of 2.5 ppm. The total CO2 errors were 
simulated using four different .syst  values: 0, 1, 2, and 3 ppm. Thus the mean total error for 
monthly average total column CO2 varied between 0.8 and 3.8 ppm. Figure 5.1b shows the 
σtotal distribution calculated from (1) for total column CO2 simulated for GOSAT in July 2005. 
Even after reductions due to the retrieval restrictions for SNR and cloudy conditions, the 
number of observations N (see Figure 5.5) was still quite large for direct use in the Bayesian 
inverse model of Enting et al. (1995). 
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We assigned an uncertainty to all simulated data for each month in 2005. The bias for 
surface stations was assumed to be zero. We used the “time-dependent” residual standard 
deviations (RSDs) of the CO2 observations at ground-based stations as the surface data 
uncertainties (Enting et al., 1995; Maksyutov et al., 2008b). The seasonal-dependent RSDs 
were obtained from the statistical summary of monthly atmospheric variability described by 
GLOBALVIEW-CO2 (2006). GOSAT observations taken during polar night were masked by 
assigning 100-ppm random error. 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.5 Number of successful observations N in July 2005. 

 

 
5.2.2 Time-dependent inversion of CO2 

In the time-dependent inversion, we followed the method developed by Rayner et al. 
(1999) and later modified to 22- and 66-region cases by Gurney et al. (2004) and Patra et al 
(2005), respectively. We used the 66-region configuration model (Maksyutov et al., 2008a) to 
estimate the uncertainties of monthly mean regional CO2 fluxes. The monthly carbon emission 
pulses of 1 GtC yr-1 intensity from each of the 66 regions were transported using the NIES 
tracer transport model (Maksyutov et al., 2008b) with 2.5º × 2.5º horizontal resolution. The 
model was driven by 2005 wind data from the NCEP reanalysis dataset. Therefore, the 
influences of regional fluxes on the observed CO2 concentrations were simulated and 
summarized as a transport matrix for use in Bayesian synthesis inversion, following the 
method of Patra et al. (2005).  

We used the Bayesian inverse modeling procedure of Gurney at al. (2002), which was 
based on that of Enting et al. (1995). We minimized a cost function F to reduce the 
mismatches between the atmospheric observations D and the responses to surface fluxes 
predicted by the transport model, G·S (where G is the transport operator), and between the a 
priori and predicted fluxes, S0 and S, respectively: 

       TS
T

D SSCSSSGDCSGDF 0101
0   .       (3) 
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The solution to the inverse model provided optimal estimates for the regional fluxes and the a 
posterior error covariance of the flux estimates CS: 

111 )( 0
  SD

T
S CGCGC ,       (4) 

where CD and CS
0 are error covariance matrices of the atmospheric observations and a priori 

fluxes, respectively. 

According to (4), the flux uncertainties are independent of the observed concentrations 
and prior fluxes and depend only on the observational uncertainties, prior flux uncertainties, 
and atmospheric transport. Therefore, we can discuss flux uncertainties without using real 
observations. Our “real” observations were used to investigate the influence of perturbed 
concentrations (with absolute bias) on the CO2 fluxes. However, we used the four different 
parts of σtotal (not to be confused with the absolute bias) in the CO2 flux error estimation. The 
error covariance matrix CD was assumed to be diagonal, where each diagonal element was 
equal to the squared data uncertainty σtotal

2. The prior flux uncertainties CS
0 for each region 

(see (3)) were set as proportional to the regional net primary production (NPP) for land and 
the oceanic bulk exchange for ocean, following Gurney at al. (2002). After this, we 
normalized the bias by subtracting the average value and dividing by its standard deviation. 
Thus, the average bias was almost zero, but there were some local areas with high bias values 
in the regions with large aerosol optical thickness anomalies. We only used the data with bias 
lower than 4 ppm, based on the assumption that the bias was already accounted for by 
retrieval, calibration, and validation procedures. We assumed that the spatially random part of 
the bias was included in σtotal. 

 

5.3 Results and discussions 
5.3.1 Flux uncertainty reduction 

We initially reduced the flux uncertainties by adding ground-based observations, 
following Gurney at al. (2002), and then adding the simulated GOSAT observations with 
assumed uncertainties. Figures 5.6a and 5.6b show the flux uncertainties for (a) when only 
ground-based observations were used and (b) when both ground-based and GOSAT 
observations were used. In the first case, 151 stations were used in the inversion, while in the 
second case there were additional GOSAT observations aggregated to 7.5º × 7.5º grids over 
land for each month (565 additional points in total). Hereafter, we refer to the uncertainties in 
the flux in (a) and (b) as σS,GV and σS, GV+GOSAT, respectively. In Figure 5.6b, GOSAT 
observational data were assumed to have a 1-ppm bias and 2.5-ppm single-shot accuracy, 
corresponding to 1.8 ppm for the monthly mean error. For that case, the average reduction for 
land regions was about 30%. The relative reduction of mean flux uncertainty was defined as  
1 - σS, GV+GOSAT /σS, GV.  

Figure 5.7 shows the relative reduction of annual CO2 flux uncertainty for each of the 66 
GOSAT data regions with 1.8-ppm monthly mean error. Following Rayner and O’Brien 

(2001), we calculated the total uncertainty  as 
2
nn

 ,       (5) 

where σn is the flux uncertainty for region n, and the sum is over all 66 regions. Also 
following Rayner and O’Brien (2001), we expressed the sensitivity of the source uncertainty 
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∑ as a function of the pseudo-data precision (Figure 5.8). When compared to the existing 
network of ground stations, our results indicated that the monthly averaged column data 
precision σtotal on 7.5º × 7.5º grids needed to be finer than 0.8 ppm to reduce the average 
uncertainties for all 66 regions by 50%. 

 

       
                                      (a)                                                                    (b) 

Figure 5.6 CO2 flux uncertainties in 2005 (GtC yr-1 region-1). (a) Surface stations only and (b) 
surface stations and simulated GOSAT data with 1.8-ppm precision for the monthly mean (σsyst = 1 
ppm) were used in the inversion. 

 

 

 
 

Figure 5.7 Monthly mean reduction ( 100%) in the annual CO2 flux uncertainties of GOSAT 
data with 1.8-ppm precision (σsyst = 1 ppm). 
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Figure 5.8 Relative CO2 flux uncertainties for different monitoring network configurations. The 
dash-dot line shows the existing surface network case. The thin solid line shows the 50% reduction 
level of total flux uncertainties. 

 

We can conclude that the high-precision satellite measurements were as effective as the 
surface observations in reducing the estimated flux uncertainty in the time-dependent inverse 
model. Data from GOSAT are expected to reduce flux uncertainty by as much as 50% for 
certain regions with low densities of existing ground-based observations (see Figure 5.7). 

 
5.3.2 Perturbed data and bias in fluxes 

The simulated bias varied from month to month over a range of -1.5 to 4 ppm. For 
example, in July 2005, the bias standard deviation was 0.9 ppm (see Figure 5.2). We defined 
the bias such that it could either increase or decrease the observational values. We quantified 
the impact of the total column CO2 data bias on the inversion by the model sensitivity, which 
we defined as the difference between the calculated posterior fluxes with and without 
perturbed pseudo-observations. The fluxes obtained without bias in the input data were 
assumed to be the “true” predicted fluxes. Figure 5.9 shows the result of perturbing the total 
column CO2 by adding the absolute bias to the unbiased GOSAT measurements for July 2005. 
We compared the corrections to the prior fluxes obtained from unbiased observations (see 
Figure 5.10a) with the perturbed observations (see Figure 5.10b). Our results (see Figures 
5.10c, 5.11) indicated that the fluxes were very sensitive to biased observations, and 
perturbation with 1-ppm σ caused absolute errors comparable to the total flux values. The 
problem of flux constraint becomes unresolved when the noise background is too large. 
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Figure 5.9 Total column CO2 (ppm) in July 2005, perturbed by bias. 

  

   
                                     (a)                                                                        (b) 

 
  (c) 

 
Figure 5.10 Corrections (GtC yr-1 region-1) of a priori fluxes in July 2005 with different inverse 
model configurations. (a) No bias in GOSAT observations (minimum = -0.78, maximum = 0.27). (b) 
Biased GOSAT observations (minimum = -0.87, maximum = 2.25). (c) Errors in the fluxes due to bias 
in GOSAT CO2 data (minimum = -0.47, maximum = 2.29). 
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Figure 5.11 Same as Figure 5.10c, but for the annual flux in 2005 (minimum = -0.44, maximum = 
2.88). 

 

5.4 Conclusions 
We used an inverse model of atmospheric transport in order to evaluate performance and 

utility of GOSAT observations of total column CO2. One of the examined tasks was flux 
uncertainty reduction caused by extending the CO2 surface observational network with 
GOSAT data. New numerical evaluations were aimed to get additional knowledge which 
would help us to build the reliable level 4 of the GOSAT mission containing CO2 flux data. 
We estimated monthly fluxes and flux uncertainties via the inverse procedure. The NIES 
transport model has given us global distribution of total column CO2 and has made it possible 
to simulate satellite observations on desirable time spatial resolution. We aggregated the 
simulated GOSAT data to 7.5° × 7.5° grid cells and averaged over 1 month to derive total 
CO2 column monthly mean data. The number of successfully retrieved GOSAT data in our 
analysis was corrected by clear-sky factors, assuming a global mean clear-sky probability of 
11%. One of the significant improvements to our previous studies (Maksyutov et al., 2008a) 
is screening the GOSAT observational frequency by a specific GOSAT signal-to-noise ratio 
distribution. Moreover, more precise evaluations of retrieval errors gave us the possibility to 
make our simulations as close to the real cases as possible. Our results showed that the total 
errors in the monthly averaged column data needed to be less than 0.8 ppm to reduce the 
mean regional flux uncertainties by 50% for a time-dependent 66-region inversion setup. As 
expected, we also found that uncertainty was reduced in regions with low surface observation 
densities. This result is also in good agreement with our previous 22-region version setup 
(Maksyutov et al., 2008a). 

As a result of the studies on total error dependence on biased data we found that bias 
contributes a lot to the total error with significant power. To compensate for this, reduction of 
the random error has become important in time-dependent cyclostationary analyses; in 
addition, one should make efforts to eliminate biases. 

In this study, we used a simplified criterion for biased data rejection; this criterion should 
be made more selective. A more detailed study of observation biases as functions of thin 
cloud cover, aerosols, and other retrieval-related parameters would also help to evaluate the 
utility of GOSAT observations for various applications. We found that bias in the data had a 
remarkable influence on the absolute flux errors. Bréon et al. (2005) and Houweling et al. 
(2005) have both noted that small, unbiased data sets generally yield more accurate flux 
estimates than large, biased ones. Presented simulations were performed with strict 
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restrictions for model parameters. Further, retrieval error for single-shot measurement was 
1%; in any contentious cases concerning presence of clouds, Pcsr was assumed to be zero. We 
tried to avoid underestimation of GOSAT performance, and our results show significant 
improvement in the tasks of CO2 flux uncertainty reduction. 
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