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1. Background

The grand purpose of our study is to reveal the
dynamical structures which underlie the general circu-
lations of the planetary atmospheres. It is aimed to
construct a theoretical framework which is useful in
describing their circulation characteristics, as tried by
Golitsy'nm since 1960’s ~, Qur interest in due course is
to recognize the atmosphere of the earth (or the climate
of the earth) as one of the possible realizations in the
physical parameter space observed in the solar system.

One of our procedures in revealing the possi-
ble underlying dynamies is to gather and classify atmo-
spheric circulation patterns which might be observed
under various values of planetary “external” conditions
such as orbital parameters (amount and variation of
the incoming solar flux}, radius and rotation rate of
the planet, radiation property of the atmosphere, and
surface boundary setups. The sampling of the possible
atmospheric circulations may be possible by numerical
experiments by the use of the super computer powers.

Our search in cdrculation patterns is now per-
formed for the following three major targets:

1. to reveal the possible circulations whick might
be realized with the earth’s condition, but with
strongly simplified surface and/or physical pro-
cesses,

2. toreveal the possible circulations which might be
realized with the values of solar flux and orbital
parameters which are related to Mars, Earth and
Venus,

3. to reveal the possible circulations which might

be realized as convection of a spherical shell in.

general,

These are the targets being studied continuously from
the preceding years,
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The first target includes so called aqua-planet

.experiment, where all of the lower boundary surface

is assumed to be covered by the ocean® 4. The aim
is to answer the basic problem of the climate, that is,
“where and how does it rain?”. In the aqua-planet ex-
periments performed so far, the focus has been placed
on especially in searching for the idealistic precipitation
distribution of the tropics. The experiment performed
here is also in this category, however, the new feature is
to find cut the deformation of the precipitation distribu-
tion to a warm SST (sea surface temperature) anomaly
placed in the tropics. The configuration is supposed to
extract the effect of the warm SST region in the real
Western Pacific on the general circulation patterns.

The second target is the three dimensional cal-
culations of the so called runaway greenhouse effect.
It has been argued, in relation to the evolution of the
atmospheres of Venus, Earth and Mars, that there ex-
ists a limit of radiation which can be emitted from the
top of the atmosphere with the ocean!®. The interest-
ing point is that the radiation limit predicted in the
literature is not far from the value of the incoming so-
lar flux of the present earth. It is about 300 W/m?.
The argument placed so far is presented by the use of
one dimensional models. It is of interest to observe
with three dimensional model to what extent the cli-
mate of present earth is stable to the variation of the
solar constant. The present concern is to assess the cal-
culation possibility of the evaporation or the freezing of
the oceans.

The third target is to refine the dynamical frame-
work of the rotating spherical convection theory, and
alse to acquire the description ability of the circula-
tion patterns of the deep “atmospheres” as those of
outer planets and the sun. The theory of convection in
rotating spherical shells has been intensely considered
by Busse and his colleagues!®, The difficulty in their
work is that the description utilized is too much math-
ematical, and hence it is not easy to acquire physical
insight. Especially for the distribution of the angular
momentum, there has not been presented any satisfac-
tory mechanistic description. .

Our activity this year has been focused on the



parameter study of the aqua planet situation with vary-

ing solar flux. Accordingto the one-dimensional radiative-

convective equilibrinm model, the equilibrium state of

state obtained by our model are presented.
The second study is to determine the three-
dimensional runaway Limit. The series of calculation

atmosphere-ocean system diminishes (the runaway green- for various solar flux are performed for this purpose.

house state) when solar constant exceeds a critical value
called runaway limit. The previous studies on the run-
away greenhouse state almost all use the one-dimensional
radiative-convective equilibrium models. The following
questions have not been studied at all : 1. whether the
runaway greenhouse state occur even in three- dimen-
sional system or not, 2. if runaway state occur, how
much is the value of runaway limit 3. how different are
the circulation pattern of runaway states from that of
_present earth. The answers of above questions in case
of gray atmosphere are presented in following sections

2. Experimental design

2.1 Model

The model utlhzed is basically the same as that
uged in [3]. It is the code originally produced by Dr.
Numaguti of NIES, and is the version now archived and
. maintained by GFD-DENNOU CLUB. The model con-
sists of the three dimensional hydrostatic system on a
sphere with very erude physical processes. The dynam-
ical part is represented by the pseudo spectral method
with the triangular truncation at wavenumber 21 (T21)
and 32 vertical levels. The horizontal resolution might
be crucially small but still is able to represent baroclinic
instability.

The cumulus paxa.metenza.tlons are Kno scheme
or adjustment scheme or large scale condensation only.
In this report, we will describe only the results with ad-
justment scheme. The vertical diffusion is represented
by Yamada-Meller Level II scheme. The surface fluxes
are evaluated by the usual bulk formula.

The surface is all covered by the ocean (aqua-
planet). The value of SST is determined by the surface
heat budget. The surface has no heat capacity, i.e., so
called swamp ocean.

The radiation processes utilized is the exactly
the same one as that of [5]. There is no scattering.
Only the water vapor absorption of long wave radia-
tion is included. Moreover, the absorption coefficient is
constant (gray atmosphere). The sun is assumed to be
at the equinox position. Hence the zonal mean incom-
ing solar flux is symmetric arcund the equater.

In order to enable the longer term integration
of the runaway greenhouse state, we have to introduce
Rayleigh damping and Newtonian cooling in the upper
7 layers, and moreover we have to introduce a verti-
cal smoothing filter similar as [8] in temperature and
horizontal wind fields.

2.2 Experimental Design

The first study performed this year.is the the
long term integration of the runaway greenhouse state.
The long term integratons of runaway greenhouse states
is impossible without introducing the damping layers
and vertical filter as described in 2.1. In section 3.1, the
results of 1000 day integration of runaway greenhouse

As the initial condition, rest and homogeneous temper-
ature(280K) and homogeneous specific humidity (10~3)
stateis given in all cases. The value of three-dimensional
runaway limit determined by parameter studies are pre-
sented in section 3.2.

The third study in this year is to interprete the
value of runaway limit presented in 3.2. In order to
consider this problem, the difference of heat budget of
equilibrium states are discussed in 3.3. Then, using the
results, the reason why runaway limit is 400 is consid-
ered in 3.4,

3. Some of the Results

3.1 The'long term integration of runaway greenhouse
state.

The results of 1000 day integration of runaway
greenhouse state are shown in Figs. 1 and 2. These
figures show time sequence of global mean OLR and
ground temperature, respectively. In this calculation,
the averaged solar flux over globe S is 450 W/m?, which
is 1.3 times larger than the value of present earth. As
shown in Figure 1, the outgoing radiation emitted from
the top of atmosphere. decreases and reaches 330 W/m?
at 1000 day, though global mean inward flux is given
450 W/m?. The reason is that the vapor amount in at-
mosphere increases and the atmosphere becomes opaque

{(In this case, global mean specific humidity and optical

depth are 0.2 and 20, respectively). OLR is determined
by the vertical structure of the temperature at 7 = 1
level in the opaque atmosphere. Besides, the temper-
ature structure approaches the saturated water vapor
pressure curve. Therefore, the value of OLR is deter-
mined by the saturated water vapor pressure curve. In
Figure 1, the value of OLR approaches the value de-
termined by above mechanism. The global mean tem-
perature increases and reaches 370 K at 1000 day be-
cause the atmosphere only can emit the radiation much
less than inward solar flux(Figure 2). This state corre-
sponds the runaway greenhouse state discussed by the
one-dimensional radiative-convecitve model [5]. Our
calculation confirms that the runaway greenhouse state
occurs even in three-dimensional system.
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In this sectlon, we overview how the equilib-
Figure 4
£ E shows the zonally averaged OLR for equilibrium states,
w]m:h are case of § = 300 W/m S =
£S5 =375 W/m?, § = 387.5 W/m? and § = 392.5W/m”.

FThese results show that the value of tropical OLR is 400

, :‘W/m when global mean solar flux exceeds 375 W/m?.
F The values of OLR in higher latitude also approach 400

EW/m? when solar flux increases. The latitudinal dif-
E ference of ground temperature also decrease (Figure 5).
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Figure 2. Same as Fig‘ure 1 except for ground temper--
ature.

3.2 The results of parameter study

The calculations for various solar constants are
performed for the purpose of determining the runaway
limit of three-dimensional system. The resluts are shown
in Figure 3. The relationship between the global mean:
OLR, after 1000 day integration and the value of in--
ward solar flux is shown in this figure. When the value
of the inward flux is less than 392.5 W/m?, the val
ues of OLR almost equals those of inward flux and
the systems reach equilibrium states. But the values
of OLR become less than 350 W/m?, in cases with so-
lar flux larger than 400 W/m?. In these cases, both of

the ground temperature and moister content increase.

and the runaway greenhouse states occur as discussed
in 3.1. As the result, the value of runaway limit of
three-dimensional gray atmosphere is 400 W/m?.

Therefore, both of OLR and temperature distribution
flatten increasing solar flux.

outgoing longwave
| ST S KN ST N N ST TR DT

345 W/m?,

TTT Y

Lt S S

2 400 -

A ]

x ]

0 -

maoo-:

= ]

° ]

2200

z i | I T I T T N N WO (P N I N S A

o R e e B e e e N
-90 -60 .-30 0 30 60 90

latitude

——— 31IPEADR ——tr m— 31 3FAADm
------- S13P3A0N —— — S186FSADm

S153TPAADa

Figure 4. The latitudinal distribution of OLR for var-
jous solar fluxes. The value of solar fluxes given are
392.5 W/m?, 387.5 W/m?, 375 W/m?, 345 W/m?, 300
W /m?,



ground temperature

heat {lux

2 340 bl S 1000 Fdrhrtrtrrtr bt . T
¢ 320 L
19
‘é"aoo ] % L
“ 260 - - -
T 240 4 [ o
= . L =
o 220 H L
te 4 L
Maoo 1:|'IIIl|ll|lj!llllll[l‘II'Ill,l_l_‘llrll'I:_L 0 rrl',l r‘rln[j‘lll lil -'1i = ; [-‘T—-
-90 -80 -30 0 30 60 20 -90 -60 -30 0 30 60 90
latitude latitude
m———— Si2P%ADa —_— —— 113P9ADm AN — e ETAP
------ S15PAD — s m— J168FSADM mesmw== BLRE — . SLR
B16TP1ADa BINS

Figure 5. Same as .Figure 4 except for ground iemper-
ature.

To consider the reason of flattening of OLR. and
ground temperature distributions, we compare the en-
ergy Hux distribution of the case of 5 = 345 W/m’
which is the value corresponding to the present earth
condition, and the case of § = 392.5 W/m? which is
the value slightly less than runaway limit(Figures 6 and
- 7). Firstly, ground fluxes are considered. When solar
flux increase, the atmosphere becomes opaque and net
radiation flux at the surface decrease. Then, evapora-
tion flux increases because of surface energy balance.
Especially in tropics, the evaporation flux dominates.
Because the evaporation process has negative feedback
effect for ground temperature changes, the temperature
change in tropics is less than that in higher latitude as
shown in Figure 5. Next, the heat source of atmosphere
is considered. The condensation heating dominates in
tropics and 60 degrees. The increased condensation
at 60 degrees warms the higher latitude atmosphere.
Therefore latitudinal differences of OLR and ground
temperature decrease increasing solar flux.

heat flux.
1000

Figure 7. Same as Figure 6 except for § = 382.5 W/m?,

3.4 The interpretation of runaway limit of three-dimensional
system

As shown in 3.3, the value of OLR approaches
400 W/m? in all latitudes. Therefore, whether the run-
away greenhouse state occur or not depends only the
global mean value of inward solar flux. In this sec-
tion, we consider the reason why the asymptotic value.
of OLR is 400 W/m?. Figure 8 shows the contribu-
tions of each level to the OLR for the case of § = 392.5
W/m?. Figure 8 implies that the temperature struc-
ture at the level of o ~ 107%% js most imporiant for
the OLR. The temperature structure at the level al-
most equals the adiabatic profile(Figure 9}. These fig-
ures suggest that the asymptotic value of OLR at the
equator can be described by the radiative-convective
equilibrium model. We also consider the effect of rel-
ative humidity, because the tropospheres obtained by
three-dimensional calculations are not saturated. The
typical value of relative humidity in the tropics is about
65 % for the case of S = 392.5 W/m®(Figure 10). The
upper limit of OLR of equilibrium solution with this
value of relative humidity is 390 W/m? and equals the
three-dimensional runaway limit(Figure 11). As the re-

sults, three-dimensional runaway limit is determined by
% i [ the condition that equilibrium solution, in which rela-
2 ] | tive humidity is taken into account, can exist.
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Figure 8. The contributions of each level to the OLR
for the case of § = 392.5 W/m®.
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1. Background

Particle motions in the turbulent boundary layer
are often seen in significant environmental prob-
lems such as desertification and air pollution, and
they also occur in many industrial processes. It
is, therefore, of great practical interest to investi-
gate particle motions both in settling environmen-
tal problems and in designing industrial equip-
ment. Particle motions in turbulent flows have of-
ten been investigated using numerical simulations.
However, most of the numerical simulations were
limited to small nonspinning particles at low par-
ticle Reynolds numbers of Re < 1, since drag and
lift acting on a small particle comparable to or less
- than Kolmogorov scale can easily be given by ana-
Iytical formulas based on the Stokes's assumption.
‘On the other hand, motions of large particles at
high particle Reynolds numbers of Re > 100 have
not been simulated, because of the difficulty for

estimating the lift and drag acting on large parti-
cles. :

2. Objective

The purpose of this study is to humerically in-
vestigate the effects of fluid shear and particle
spin on particle lift and drag in a linear shear
flow at high particle Reynolds numbers. Three-

drag, lift, spinning sphere, linear shear flow, numerical simulation

dimensional numerical solutions were obtained for
& steady, linear shear flow past a spinning or non-
spinning spherical particle over a wide range of
particle Reynolds number (0.5 < Re < 500), and
the effects of shear and spin rate on lift and drag
coefficients were investigated (1.

- 3. Numerical Simulation

Figl Coordinate system for a spinning sphere
in a linear shear flow.

A three-dimensional numerical simulation was
used to estimate particle lift and drag induced by

__38__
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Fig.2 Comparison of the shear lift coefficient C,
for a stationary sphere in a linear shear flow
between the present and previous(3,4,5] studies
(0.5 < Re < 500).

fluid shear and particle spin (Fig.1). The im-
posed flow was a linear shear flow without turbu-
lence. The three-dimensional Navier-Stokes equa-
tions were directly solved using a third-order fi-
nite difference scheme based on the marker and
cell method and the cylindrical coordinates were
used[2]. Three parameters; the particle Reynolds
number Re(= 2aU./v), the dimensionless fluid
shear rate a* (= a/U.(6U/8y) and the dimension-
less particle spin rate * (= Qa/ Uc-), were defined
and they ranged from 0.5 to 500, 0 to 0.4 and 0
to 0.25, respectively. Here Uy is the fluid velocity
at the central point of a spherical particle, a the

radius of & spherical particle and 2 the particle
spin rate.

4. Results

Figure 2 shows the variations of the shear lift
coefficient Cy, with Re for a stationary sphere in
alinear shear flow, C, rapidly decreases with incr-

0.05 T ¥ T T T .' T

1 ]

o 200 400

Re [-]

Fig.3 Shear lift coefficient C,
for a stationary sphere in a linear shear flow
{10 < Re < 500).

easing Re in the low particle Reynolds number re-
gion (Re < 10). Although the present C, deviates
from the predictions by Saffman(3} and Meild),
it is in good agreement with the prediction by
McLaughlin[5} who extended the analytical solu~
tions of Saffman(3] to higher Re. However, in the
region of Re > 100, the present C, shows the neg-
ative values in contrast with the previous results.
The negative values of C, are magnified in Fig.3.
Cy becomes negative in the region of Re > 50,
and the pegative values increase with increasing
. In previous studies, the lift force has been
considered to act towards the high speed region
(Cy > 0). Only Jordan and Fromm(8] numeri-
cally showed the negative C,, for a cylinder with
Re = 400 in a linear shear flow, but they did not
discuss why Cy becomes negative.

To investigate the negative lift, the effects of
pressure and viscous forces on C, were estimated.
The results showed that the pressure force sig-
nificantly contributes to the negative Cy, but the
viscous force has no effect on the negative C,. In
fact, the instantaneous pressure distributions on
the surface of a stationary sphere show that the
pressure force acts on the rear part of the sphere in
the negative y direction as indicated by an arrow

+ B in Fig.4a for a high particle Reynolds number

of Re = 200, in contrast with the low Reynolds n-



{b} for Re =50 and " = 0.2.
Fig.d4 Surface contours of y-component of
pressure on the surface of a stationary sphere.

umber case of Re = 50 (Fig.4b). The negative
lift coefficient was also confirmed by carrying out
an experiment of a falling iron-particle in a linear
high-viscosity shear flow produced between two
belts moving in the counter direction.

For a spinning particle, particle spin promotes
the particle drag and lift as well as fluid shear.
However, the sign of the lift coefficient does not
change even in the high particle Reynolds num-
ber region. Figure 5 shows the distributions of
the lift coefficient against the dimensionless spin
rate {1 at Re = 200 for a spinning sphere in a
linear shear flow. The solid lines indicate the lift
coefficient C21® at Re = 200 for a spinning part-
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Fig.5. Lift coefficient Cy, on a spinning sphere
in a linear shear flow.
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Fig.6 Comparison of the particle trajectory
predicted under the mean velocity field
with the trajectory measured
in the turbulent boundary layer.

icle in a linear shear flow, and the dashed lines
show the sum of the lift coefficient Cf at Re = 200
for 5stationary sphere in a linear shear flow and
the lift coefficient C!? for a spinning sphere in a
uniform unsheared flow. Although the values of
C2H are close to those of Cff + Cy, Cg“"“ does

not strictly coincide with C3 + C!?. This means



that the effects of fluid shear and particle spin rate
cannot be independently treated for & spinning
particle in a shear flow.

By using the predictions of the particle lift and
drag coefficients, a trajectory of a spinning parti-
cle at high particle numbers was simulated under
the mean velocity field in the turbulent boundary
- layer by solving a Lagrangian equation of parti-
cle motion. The predicted trajectory is compared
with the measured trajectory (7] in Fig.6. The
result shows that the organized motion, which
cannot be given onty by the mean velocity field,
strongly affects the particle motion in the turbu-
lent boundary layer.
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1. [Introduction

The numerical solution of the unsteady incompressible
Navier-Stokes equations requires discretization in both space
and time, and the discretized equations for the velocity and
the pressure are a coupled system with the incompressibility
condition, As these primitive variables are coupled and
together they form a large system, it is very expensive to
compute it directly. The coupling between the velocity and
the pressure by the incompressibility condition is one of the
main concern in designing an efficient and accurate time
integration algorithm for this system.,

Split step (time splitting) method may be used as an
approximation approach in which the solution of an
evolution equation is advanced in time by golving a set of
simple problems, each of which gives a different aspect of
physics. For solving the incompressible time-dependent
Navier-Stokes equations, the pressure splitting algorithm,
which wag first infroduced by Chorin (1], treats the pressure
term and other terms separately and sequentially. Many

authors developed the Chorin's idea, and several versions of
his algorithm have be proposed since then, e.g., fractional
step method (Kim and Moin [2]), pressure correction method
(Van Kan [3]), projection method (Bell, Colella and Glaz [4);
Gresho [S]). Essence of the aforementioned methods is to
compute an intermediate vector field in a first step by
ignoring the' incompressibility constraint and then projects
the vector field onto a divergence-free field in a second step to
obtain the velocity field. This decoupling process leads to
several smaller decouple systems for velocity components
and the pressure, respectively, so the computational cost of
caleufations of the incompressible time-dependent Navier-
Stokes equations can be significantly reduced in the velocity-
pressure formutation. However, the above methods have two
fundamental problems, ie., subtle boundary conditions for
the intermediate velocity and the pressure, and low accuracy in
time integration. Fortunately, these defects were remedied
recently by Dukowicz and Divinsky [6), and Perot [7,8]. They
congidered the full discretized equations in which the boundary
conditions had already been applied, and therefore no ad-hoc

boundary conditions of the intermediate primitive variables
are required. They also analyzed the full discretized equations
with an approximate factorization methed (Dukowicz and
Dvinsky [6]) and an approximate block LU factorization
method (Perot [7]). respectively, and showed the possible
second or even higher order time accuracy.

In this paper, we present a finite-difference scheme for
solving the three dimensional incompressible time-dependent
Navier-Stokes equalions in spherical polar coordinates.
Singularities of the Navier-Stokes equations in spherical
polar coordinates can be removed by performing spatial
discretization on a conservative form of the equations on a
staggered pgrid. Based on Dukowicz and Dvinsky's
approximate [actorization method, 2 new algorithm, which is
a second-order accurate in time and space, will be given. Then,
the spherical Couette flow between two concentric rotating
spheres is computed with this numerical method, and its
feasibility for computing flow dynamics in spherical polar
coordinates is verified. So far as we know, there is still no
literature on the work. In the next, the goveming equations
and boundary conditions are presented in Section 2. The
numerical method iz described in detail in Section 3. In
Section 4, we show some numerical results of the spherical
Couette flow and a comparson with aveailable numerical
results and experimental measurements. A summary is given
in Section 5.

2. Governing Equations and Boundary Conditions

The full incompressible Navier-Stokes equations with no
bady force and the continuity equation are

gu u-vu +—l-v2u
gt TU VU VPR
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where u is the velocity field, p is kinematic pressure and Re is
the Reynolds number.

We consider the time-dependent motion of an isothermal,
incompressible, Newtonian fluid contained in an annulus
between two concentric rotating spheres (see Figure 1). The
spheres are assumed to be rigid and the cavity region between
the spheres is fulled with a viscous fluid. The inner sphere is
constrained to rotate about the vertical axis Z with a
prescribed angular velocity Q, while the outer sphere is fixed.
The inner and outer radii of the spheres are R; and R,,
respectively. The Reynolds number is defined as

QR,?

v

Re=

whichV is the kinematic viscosity.
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Fig. 1. Spherical Couette flow geomelry

No-slip (rigid) boundary conditions along the sphercal
boundaries are :

U M g=0, U =suind onr=Ry
Up A=tk =0 on r=R;.

3. Numerical Method
3.1 Temporal and Spatial Discretization in
Spherical Polar Coordinates

For brevity, we explain our diseretization method with the
equations {2.1), (2.2). Temporal and spatial discretization of
the equations (2.1), (2.2) produces a discretized equations in
the form

at
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The equation (3.2b) is exactly equivalent to the following

split equations in which two new inlermediate velocities
included;

ﬂ-u".q.-E-t--Gpﬂ (3.2c)
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Taking the divergence of equation (3.2¢) and using the

incompressibility condition equation (3.2f), we can obtain
the following discrete Poisson equation for the pressure;

2‘E=DGI}“”“LP‘H‘
3 at . . (3 28)

3.3 Method for Solving the Discrete Velocity
Equation (3.2d)

The approximate factorization technique {Beam and Warming
[9]; Briley and McDonald [10]; Kim and Moin [2]) is used to
treat the discrete velocity equation (3.2d). we can compute the
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where L is the spatial discrete Laplacian viscous term
(conservalive part) operator, H is the spatial discrete
conventive term plus remained viscous term (non-
conservative part) operator, G is the spatial discrete gradient
operator and D is the spatial discrete divergence operator. At
is the time increment and the superscript n means the nth time
step. The spatial discrete -operators I, H, G and D are
evaluated using the central finite-difference scheme on a
staggered grid and are second-order accurate in space; [t is
noted that the boundary conditions for the momentum
equation (mbe) and continuity equation (dbc) have been
already incorporated in the discretized equations (3.1a),
(3.1b), and these boundary condition vectors (mbe) and (dbc)
should preserve & second-order accuracy of the temporal and
spatial discretization, In the present study, there are ciearly
the periodic, homogeneous no-slip boundary conditions for

the velocity, So, the boundary condition vectors are
identically zero (Perot [7]}, and will not appear.in the
following section.

3.2 Approach te the Discretited Eguations
(3.1a}, (3.Ib) with a Second-Order Approximate
Factorization Method

We can easily rewrnite the discretized equations (3.1a) and
(3.1b) in the next matrix format
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In a manner similar to Dukowicz and Dvinsky [6], the
equation {3.2a) can be approximately factorized as

discrete velocity of equation (3.2d) by solving three
tridiagonal matrices with a standard TDMA method.
3.4 Methed for Scolving the Discrete Piossion
Equation (3.2g)

We represent the discrete Piossion equation (3.2g) definitely
on a MAC staggered prid (Harlow and Welch {11}) and
compute the discrete pressure, [irstly, by application of ADI
method (Peaceman and Rachford [12]) and then solving the
system with a standard TDMA method for the two tridiagonal
matrices and with a refined TMDMA method (Temperton [13])
for the cyclic tridiagonal matrix.
3.5 Overall Numerical Computation Procedure
The overalt numerical computation procedure to solve the
time-dependent incompressible Navier-Stokes equations is a8
follows:

1. Solve the intermediate velocity from the equation (3.2c) ;
2. Solve the intermediate velocity from the equation (3.2d);
3. Solve the pressure pr*? from the equation (3.2g) with the
divergence-free velocily equation (3.2f) satisfied;

4. Solve the velocity wo+! from the equation (3.2e), and then
finish one time step calculation.

Te complete the numerical method, adequate initial
conditions of the velocity v and the pressure gradient Gp? are
required. In the present study, we chose the Stokes solution as
the initial velocity condition, while for the initial pressure
gradient it can be found that Gp®=0 is exactly satisfied. In the
following calculation, the computational domain is divided
by a number of gnde 22*361*91 in the radial direction,
menidional  direction and  circumferential  direction,
respectively. The stability of the overall numerical method is
restricted by the CFL condition. In the next Section, we
present the numerical results in the case of B=0.14 in which
the clearance ratio B is defined as B=(R;-R,)/R;. The Reynolds

number was quasi-statically increased in order to eliminate the
effect of the rotative acceleration ratio on the sphercal
Couette flow. Time integration was carried out until the steady
state was obtained. Comparisons with the numerical solutions
and the experimental results are also shown to prove the
validation of the numerical method.
4. Numerical Resalts

Figure 2 shows the meridional streamlines in meridional
plane for different Reynolds number Re. Sold contours of the
streamline mean counterclockwise circulation while those
showing clockwise circulation are dashed. At Re=888 (see
Fig. 2a), the meridional part of the basic flow consists of one
large vortex in each hemisphere. The vortices rotate in
opposite directions in such way that the flow at the equator is
directed from the inner sphere to the outer one. The solid
streamline located exaclly at the “equator is the outflow
boundary between the two large vortices. Clearly, the zero-
vortex flow is axisymmetric reflection-symmetric about the
equator. As the Reynolds number Re is increased, the basic
flow develops (see Fig 2b for Re=B%0), and at Re=510 the
pinch phenomenon is apparent (see Fig. 2c). The pinch is
characterized by a stagnation point. Although the circulation



in the closed streamlines of the zero-vortex pinch has the
same sign as that in the Jarge vortex, it is not separated from
the large vortex. The flow with the pinches is still reflection-
symmetric about the equator. Like the Taylor-Couette flow in
differentially rotating cylinders, the spherical Couette flow in

some configurations of two concentric spheres with the inner -

one rotating, has a critical Reynolds number Re_ That is, as
the Reynolds becomes larger, such that for RezRe, the frst

instability occurs. This first instability induces a transition
o the basic flow and Taylor-Gdrtler vortices are then formed
in the equatorial region. Figure 2d shows clearly that in each
hemisphere there is one Taylor-Gtrtler vortex near the
equator. The critical Reynolds number of this one-vortex flow
is determined as Re.=920. It can be seen that the Taylor-
Gortler vortex is separated from the large basic vortex by a
nearly straight streamline which is extended from the inner to
the outer radial boundary. This streamline is an outflow
boundary while at the equator there is an inflow boundary. The

circulations in the Taylor-Gortler and the large basic vortex
have the opposite sign. A comparison of our coniputed
solution with the previous numerical work (Marcus and
Tuckerman [14], Dumas and Leonard [15]) shows a very close
similarity. As the Reynclds number Re is increased further,
the vortex flow becomes unstable due to the secondary
instability. This secondary instability results in transition to
the Taylor-Goriler vortices with spiral vortices. The spiral
Taylor-Gortler vortex flow is illustrated in Figure 3. It can be
seen that two spimals are formed in each hemisphere.
Qualitatively, the three-dimensional spiral Taylor-Gortler
vortex flow, produced with the numerical method, is in very
good agreement with the previous expenmental results
(Nakabayashi [16] and Nakabayashl and Tsuchida [17]).

6. Summary

A flinite-difference method for solving three-dimensional,
time-dependent incompressible Navier-Stokes equations in
spherical polar courdinates is presented. A new algorithm,
which is a second-order accurate in time and space, is
considered, and decoupling between the velocity and the
pressure is achieved by this algorithm. Boundary conditions
of the intermediate velocities are not required as we deal with
the fully discretized equation in the interior of computational
domain. A staggered grid system is used in present study, so
the trealment of singularities of the equations in spherical
polar coordinates is simplified and the boundary condition of
the discrete pressure is unnecessary. The discrete velocity
equations are solved with the approximate factorization
technique and standard TDMA method, while the discrete
Piossion equation ie solved with the AD! technique and a
refined TDMA method. Further, the numerical method is
tested by computing the spherical Couette flow between two
concentric spheres with the inner one rotating. A comparison
of the numerical solutions with available numerical results
and experimental measurements was made, It is demonstrated
that the initial-boundary numerical code is valid for solving
three-dimensional, unsteady incompressible Navier-Stokes
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Fig. 2. Contours of the merdional streamlines for (a) Re=880; (b}
Re=8%0; (c) Re=910; (d) Re=920.
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equations in spherical polar coordinates.
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