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Foreword

The Center for Global Environmental Research (CGER) of National Institute for
Environmental Studies (NIES), Japan was established in October 1990. The main objectives
of CGER are to contribute broadly to the scientific understanding of global environmental
changes and to elucidate and provide solutions for pressing environmental problems. CGER
conducts global environmental research with interdisciplinary and international cooperation,
provides research support facilities such as a supercomputer and databases, and offers to the
public its own data derived from long-term monitoring of the global environment.

In the context of supporting research programs that require supercomputer resources, we
provide supervision for Supercomputer Steering Committee on research programs and aid in
publishing results of these activities. We accept proposals by scientists from NIES and other
organizations for computational research associated with earth systems, such as climate
modeling, atmospheric and oceanic environment modeling, geophysical fluid dynamics, and
so on. Proposed research programs are evaluated by the Supercomputer Steering Committee,
which consists of leading Japanese scientists in the fields of climate modeling, atmospheric
chemistry, oceanic circulation, and computer science. After approval of a program,
authorization for system usage is provided. In March 2002, we finished installing a newer
supercomputer system, which has higher performance and delivered substantial results to the
understanding of earth system mechanisms.

To promote dissemination of the results, we publish both an Annual Activity Report and
occasional Monograph Reports. The Annual Activity Report presents a single year’s results
for all current research programs. Each Monograph Report presents integrated resuits of a
completed research program. This Monograph Report presents the outcome in 1992 to 2003
of a collaborative project of the Mechanical Engineering and Intelligent Systems, University
of Electro-Communications and the Institute of Fluid Science, Tohoku University. The results
will help shed light on the mechanism of geophysical fluid dynamics.

We will continue to support the global environmental research with CGER’s
supercomputer resources and the dissemination of useful information on the results in coming
years.

January 2004

Shuzo Nishioka

Executive Director

Center for Global Environmental Research
National Institute for Environmental Studies



Preface

The present volume of CGER'S SUPERCOMPUTER MONOGRAPH REPORT series is
the ninth publication of research outcomes achieved by the users of the supercomputer
facilities at the Center for Global Environmental Research (CGER) of the National Institute
for Environmental Studies (NIES). The computer resources have been provided to Prof.
Takeshi Miyazaki (Univ. Electro-Communications), Prof. Hideshi Hanazaki (Tohoku Univ.)
and their group for studies of global climate change.

Geophysical flows are subjected to strong influence by the Coriolis force and the
buoyancy force, and two types of coherent motion with different time scales are observed.
Vortices with larger time scales persist for a long time, and their interactions dominate the
dynamics of geophysical turbulence. Inertial gravity waves of a much smaller time scale are
superimposed on the slow vortex motion. The authors explore the vortex dynamics on the
slow manifold by developing a vortex-based turbulence model. Direct numerical simulations
using a Contour Advective Semi-Lagrangian algorithm (CASL) are performed in order to
validate the model. The proposed model captures the essential mechanisms of the energy and
momentum transport in geophysical turbulence. The fundamental aspects of stratified/rotating
turbulence of smaller time scales are also investigated. The characteristics of
stratified/rotating turbulence is strongly affected by the 'wave' components generated by the
restoring forces, such as the buoyancy force and the Coriolis force. These wave effects, which
have been studied extensively by the authors in this research project, but have often been
ignored in the 'traditional' studies on turbulence, will make fundamental change in the future
re-development of the turbulence models for geophysical flows.

I hope this publication contributes to further progress in the research of global
environmental change, especially of global warming research.

January 2004

(/fV Fix. fb\ a7

Hideaki Nakane

Head, Atmospheric Physics Section
Atmospheric Environment Division
National Institute for Environmental Studies
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Abstract

Two types of coherent motion with different time scale are observed in geophysical flows,
which are subjected to strong influence of the Coriolis force and the buoyancy force. Vertical
vortex structures with larger time scale persist for long time and their interactions dominate the
dynamics of geophysical turbulence on ‘slow manifold’. On the other hand, inertial gravity
waves of much smaller time scale are excited and superimposed on the ‘slow vortex motions’.
Both vortices and waves contribute to transport of momentum, energy and scalar quantities in
geophysical turbulence. We investigate the dynamical characteristics of vortices, waves and
turbulence with their contribution to scalar transport phenomena. In chapter 1 the dynamics on
the slow manifold is investigated, based on the quasigeostrophic approximation. Recently,
Meacham ef al. obtained a series of exact unsteady solution of the quasigeostrophic equation,
which represents a uniform ellipsoidal vortex patch embedded in a uniform 3D shear field A
Hamiltonian dynamical system describing the interactions of N ellipsoidal vortices is introduced,
where each coherent vortex 1s modeled by Meacham’s ellipsoid. The equations of motion are
derived following the procedure of Hamiltonian moment reduction. The center of vorticity and
the angular momentum are conserved, besides the total energy and Casimirs of the system, such
as the vortex height and the vortex volume. The degree of freedom of N interacting vortices is 3N
whereas we have only three Poisson commutable invaniants. Then even a two-body system shows
chaotic behavior and the ellipsoidal moment model can predict merger of a co-rotating vortex
pair placed within a critical distance. Direct numerical simulations based on a Contour Advective
Semi-Lagrangian algorithm (CASL) are performed in order to assess the validity (and limitation)
of the ellipsoidal moment model. In Chapter 2 we have investigated the ‘unsteady’ aspects of
stratified/rotating turbulence which originate from the ‘wave’ components of the fluid motion.
These wave components are generated by the buoyancy/Coriolis forces, which are usually the
sources of internal/inertial waves. The unsteady aspects have been often ignored in the previous
studies on the turbulent viscosity/diffusion, but our results show that they are, together with the
initial conditions, often crucial to the long-time development of stratified/rotating turbulence. We
have used Rapid Distortion Theory (RDT) for the theoretical investigation, and compared the
results with the numerical simulations and the laboratory experiments.

>

Keywords: Stratified/rotating turbulence, Rapid distortion theory, Scalar transport,
Quasigeostrophic turbulence, Coherent vortex structures, Ellipsoidal moment model,
Instability of ellipsoidal vortices, Merger of co-rotating vortices, Counter-rotating vortex pair,
Model-validation by CASL-computation
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Chapter 1
Vortices in Geophysical Flows
- Quasigeostrophic Motions -
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1.1 Introduction

Geophysical flows are under strong influence of the buoyancy force associated with sta-
ble density stratification and the Coriolis force due to the earth’s rotation. The dynamics
of such rotating stratified flows is characterized by inertial gravity waves superimposed on
nearly geostrophic vortex motions. Since the time scales of vortex motions and waves are
widely separated, it is helpful to consider a ‘slow manifold of vortex motion” by smearing
out ‘fast inertial gravity waves'. In fact, isolated vortices with length scales compara-
ble with the meso-scale can persist for a relatively long time. These nearly geostrophic
fluid motions are known to be described by the quasi-geostrophic equation. Due to the
effects of Coriolis force and stable stratification, vertical motions are suppressed. The
fluid motion is confined within a horizontal plane, whereas different motions are allowed
on different horizontal planes. We can introduce a stream function (the fluid mechanical
sign-convention), which depends on the vertical coordinate z:

oy Oy
U — a—y,v B -—8_]‘ (11)

The quasi-geostrophic equations of motion (conservation of potential vorticity; e.g. Ped-
losky (1979)) in a uniformly stratified rotating (an ‘f-plane’) fluid, are written as
OAY (87/} a oY 0)

il vt el EAUBSLD (1.2)

dy dxr Oz Oy
Here A denotes the three-dimensional Laplacian operator and the potential vorticity g is
related to the stream function ¢ as

q= —A. (1.3)

Numerical sitnulations of decaying quasi-geostrophic turbulence by McWilliams (1989)
and McWilliams et al. (1994) indicate that the vorticity field develops coherent vortex
structures and that their interactions dominate the dynamics of the turbulence. It is
tempting to develop a vortex-based turbulence model based on these observations.

There have been many theoretical works on two-dimensional elliptical vortices of uni-
form vorticity, beginning with Kirchhoft’s elliptic vortex, moving on to steady solutions in
a strain field by Moore and Saffman (1971) and then to Kida’s general solutions (Kida,
1981). Meacham (1992) extended these two-dimensional vortices to three-dimensional
ellipsoidal vortices of uniform potential vorticity using the quasi-geostrophic approxima-
tion, under which the fluid is uniformly stratified. Miyazaki et al. (1999) obtained exact
solutions that represent tilted spheroids rotating steadily about the vertical axis, and
investigated their stability against infinitesimal perturbations. Meacham et al. (1994) ex-
tended Kida’s analysis to three-dimensional quasi-geostrophic cases and obtained exact
unsteady solutions representing a uniform ellipsoidal vortex patch embedded in a uniform
lhorizontal strain e and vertical shear 7 with uniform background vorticity w. Hashimoto
et al. (1999) investigated the intrinsic stability of stationary ellipsoids in a uniform hori-
zontal strain field. Meacham et al. (1997) gave a clear theoretical interpretation of their
previous solutions from the viewpoint of Hamiltonian moment reduction. The dynamics
of an ellipsoidal vortex in uniform shear is shown to be a Hamiltonian system of two
degrees of freedom.
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Miyazaki et al. (2000) developed a simple turbulence-vortex-model based on these
findings, in which each vortex was represented by a slender spheroid; i.e., a wire-vortex
model. The dynamical equations were derived systematically using the procedure of
Hamiltonian moment reduction. The system of NV interacting wire-vortices had 2N degree
of freedom. Recently, Miyazaki et al. (2001) developed an ellipsoidal vortex model, by
extending the previous wire model. Each coherent vortex is modeled by an ellipsoid of
uniform potential vorticity embedded in a ‘locally uniform shear field” induced by other
vortices. The equations of motion were derived following a repeat of the procedure of
Hamiltonian moment reduction. The center of vorticity and the angular momentum, in
addition to the total energy and Casimirs of the system, such as the vortex height and
the vortex voluime. are conserved. The degree of freedom of N interacting vortices is 3N,
whereas we have only three Poisson commutable invariants. 1t is the case that even a
two-body system shows chaotic behavior.

The objective of this chapter is to assess the validity of the Hamniltonian ellipsoidal
moment model by performing direct numerical simulations based on a CASL-algorithn,
in which dissipative effects are taken into account by ‘surgery’. The dynamical equations
of the ellipsoidal moment model are described in 1.2, briefly. The outline of the Contour
Advective Semi-Lagrangian (CASL) algorithm is explained in 1.3. The instability of
tilted spheroidal vortices is considered in 1.4, where we investigate nonlinear dissipative
behavior, such as, filamentation and break-up of unstable vortices, in some detail. The
interactions between two co-rotating vortices are studied in 1.5. It is shown that the
ellipsoidal moment model can capture the merger of vortices fairly well. In 1.6, we
investigate the behavior of a counter-rotating vortex pair (dipole). It is shown that the
ellipsoidal moment model predicts infinite stretching of slender vortices. In contrast, such
strong stretching is not observed in CASL-computations. The ellipsoidal model needs to
be refined in order to circumvent the false singularity.

1.2 N Interacting Ellipsoidal Vortices -Ellipsoidal Moment Model-

We consider the motion of N interacting ellipsoidal vortices of uniform potential
vorticity ¢; : ¢ = 1,2,---, N, whose center of vorticity is located at (X;,Y;, Z;). Here.
the z-axis denotes the vertical axis. The potential vorticity ¢; is uniform inside the i-th
ellipsoid, whose principal axes lengths are oy, 3;,v;, respectively. Their orientations are
specified by the Euler angles ¢;, 6;, ;.

€T é'i
Yi = M| n |, (1.4)
4 G
cos¢; —sing; 0 cosf; 0 sinb; cosyy; —siny; 0
M, = sing; cos¢; O 0 1 0 siny; cosyy; 0
0 0 1 —sinf#; 0 cosé; 0 0 1

(1.5)

where (.7, (;) denote the principal axes-coordinates fixed to the 4-th ellipsoid with
(i, ¥i, 2i) being the Cartesian coordinates centered at (X;,Y;, Z;). The matrix M; is the



CGER-1057-2004, CGER/NIES

SOj transformation matrix. The detailed derivation of equations of motion is presented
in Miyazaki et al. (2001).

The state (location, shape, and orientation) of each ellipsoid is also specified by the
values of 10 moments up to the second order:

L T e I | T
RATIGE=1) — o RS0 = g2 R eHI06=T) L2
7 H10G=1 52 pEH106-1) Ty, M ote-1) Yz,
A 10H106-1) o,
and
0 ~ 54 10(i~
gl t1oGe=1 / gem? 11 Y drdyd 2. (1.6)
J D,
Here.
E 4m ~
P _}qu, glH106—1) (1.7)

denotes the total vorticity of the i—th ellipsoid. The meaning of other variables becomes
clearer if we shift the coordinate-origin to the center of each ellipsoid (X;,Y;. Z;):

X, - a‘2+10(i—-1)/(~1’1+ 10(i=1) _ a’2+10(i—1)/a‘1+10(i—1)‘ (1.8)
Y, = @001 gD g I06-1) 1061 (1.9)
7. - (1’47+1()(1'-1)/&’1“0(1'—1) - a“““(i‘”/&lH““_l\’, (1,1())
and
5410(i—1) _ ~5+10(:—1 r2~1410(i—1)
@b PO g HI0G=D) 211061 (1.11)
@B 106=1) . Z64106-1) _ y;alfl()(l—l)‘ (1.12)
T+10(i—1)  ~7+10(:—1 2~1410(i~1 :
GTHIOG=D)  GTHI0GS1) 214 106-1), (1.13)
GEHI06=T) o ARE10G=1) Ly f 141061 (1.14)
ag,Jr]()(i__]) _ ‘Hl() (z—1) Y/ ~1+10(1 1) (1 15)
Q10— g0 — Z.X.a gl t106i-1) (1,16)

These denote the second order moments of the i—th ellipsoid,

gPH0G-1 0612 (1.17)
G6H106-1) 14106~ 1>y12. (1.18)
QTTI0G-D L 1106172 (1.19)
G0N o TR0G=D g (1.20)
QOFI0G=D 106Dy (1.21)

gl 1H06- 1)”% (1.22)

which are related to the shape and orientation of the ellipsoid as

1 . ) ,
x? = R {02 (cos ¢; cos B; cos ¢ — sin ¢, sin ;)
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+/3i2((tos & cos By sin; + sin ¢; cosh;)? + %2 cos? ¢, sin? b:}. (1.23)
E = %{af(sin &; cos 0; cos; + cos @, sin;)?
;/31.2(511'1 ¢; cos B; sin 1h; — cos ¢; cos wi)z + %2 sin? ¢; sin? 6:}, (1.24)
2 = %{af sin? 0; cos® ¢ + 37 sin® 0, sin ¢, + v7 cos® 60}, (1.25)
Ty = é{a?((‘os ¢; cos f; cos ¢y — sin ¢ sin ;) (sin @; cos 0; cos Y, + cos ¢, sin ;)
+132(cos ¢; cos B; sinp; + sin ¢; cos ;) (sin ¢; cos B sin 1), — cos ¢; cos ;)
197 cos ¢; sin ¢; sin® 6, } (1.26)
Vi = é{af(sin @; cos 0; cos 1, + cos ¢, sin ;) (— sin b; cos ;)
+32(— sin ¢; cos O sin 1l + cos ¢; cos ;) sin b; sin
42 sin ¢; cos §; sin 6;} (1.27)
T, é{a/f(cos ¢; cos B; cos 1; — sin ¢, sin ;) (— sin 6; cos ;)

432 (= cos @; cos 0; sin 1); — sin ¢; cos ;) sin 6; sin
+77 cos ¢ cos 0; sin 0, }. (1.28)

The equations of motion are expressed. using a Poisson bracket, as

da* . N - OH
~q _ Juy : A
o —{a', H} Ej J Erh (1.29)

where J is the cosymplectic matrix of the Lie-Poisson form

H 0 - 0
. 0 J, 0 0
J = : (1.30)
0 0 0 Jn
and
e 0 ¢l 0 0 0 o] o] 0 0 A
0 0 gl H10G--1) o) o) 25310z -1} 0 g2t10G-1) gii106-1) o
0 _gl-iuz- 0 o L g2t 1e—1) 0 0 _g3tlo(e -1) 0 _gdtrei-1)
0 0 0 0 0 0 0 0 0 0
7 0 0 252t10G=1) 0 48 F10G=1) g 9ghtI0GE- ) 2410 0
Ji = 0 —23t1et=D 0 0 -8t 0 0 -—2gftleG-1) 0 —2a¥1 110G -1)
0 0 0 0 0 0 0 0 0 8}
0 _g210(i-1) F3+10G- 1) 0 _9g5+10G-1) g8 t1eGE-1) 0 0 G9+10G-1) _gloe
0 7a4v1l,l(z—1) 0 0 _ngloe 0 0 F910GE-1) 0 g7 10G-1)
0 0 gitloz—-1) 0 0 g9 00— 1) 0 al0e F7H10(—1) 0
(1.31)

Without specifying the actual form of the Hamiltonian. we notice that
g H1oe=1 ga410G-0 and g7t1%0=1 are Casimirs. Physically, @' t100=1 — g1+106-1) ig (he
total vorticity (or the volume) of the i-th ellipsoidal vortex, and Z; — g**106=D /gi+106-1)
denotes the z:-coordinate of the center of the i-th ellipsoid. The conserved quantity
a’t1o6=1 s Jinked with the vortex-height zh; of the i-th ellipsoid.
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Expressing all variables @* by o', and using the chain rule for differentiations, we
obtain the equations of motion:

da” _ oM 1.32
a e (1.32)
o _p0H (1.33)
dt 002’ '
da® oH oH oH
o 4 8 2 5 2 ’10__ )
dt dab + dat ea da®’ (1.34)
dab oH oH oH
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Similar equations hold for the i—th vortex, where all superscripts are added by 10(z — 1).
The final task is to write down the Hamiltonian of the system, using these moments
up to the second order:

N
H= Z Hg + Z H s (1.39)
i=1 (4,5)

The first term denotes the summation of the self-energy of each vortex and the second
term, which is the summation over N(N — 1)/2 pairs of vortices, represents the mutual
interaction energy. As for the self-energy Hy; of the :—th ellipsoid, we can use the classical
result (Chandrasekhar, 1987):
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We must introduce an approximation in order to express the Hamiltonian H,,; corre-
sponding the mutual interaction, by using only the moments up to second order:
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The motion of the center of the i—th ellipsoidal vortex is computed from (1.32) and
(1.33), as
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The first terms on the right hand sides denote the induced velocity by the ‘virtual point
vortices f‘j’ located at (X, Y}, Z;). The correction terms proportional to the quadratic
moments with the subscript ¢ are due to the vorticity-weighted average inside the i—th
ellipsoid of the velocity field induced by the ‘virtual point vortex f‘j’, and those propor-
tional to the quadratic moments with the subscript j represent the corrections due to
vorticity distribution inside the j—th ellipsoid (non point vortex effect).

The remaining equations (1.34)-(1.38) determine the time-evolution of the shape, and
the orientation of the i-th ellipsoid. Since the volume of the ellipsoid is invariant, o, 3;, v
are not independent and we can introduce the following new variables a;, b;:

a; = —ai, (145)
Vs

b - 2 (1.46)
Yi

After straightforward (but lengthy) algebraic manipulations, we can rewrite the equations
of motion using the primitive variables a;, b; and ¢;, 0;, 1; (see also Meacham et al. (1997)).
The shape of the ellipsoid changes as
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If it were not for the horizontal strain and the vertical shear induced by other vortices,
each ellipsoid would rotate rigidly. The orientation of the principal axes ¢;, 8;,¥; changes
as
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denote the background vorticity wy;, the strain field e;; and the vertical shear r; induced
at the center of the i—th ellipsoidal vortex by the ‘j—th virtual point vortex’, respectively.
The variables Q(] are the self-rotation rates:
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ol @+ 1Y) (1.61)
af — @+ 1) (1.62)
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These complete the derivation of the equations of motion of N interacting ellipsoidal
vortices. Although these equations are very lengthy, they are actually the same as those
of Meacham et al. (1997), who considered the motion of an ellipsoidal vortex embedded
in a uniform horizontal strain, background vorticity, and vertical shear field. What we
have done here is to sum up the background vorticity w;;, the strain field e;;, and the
vertical shear 7;; induced at the center of the i—th ellipsoidal vortex by the ‘j—th virtual
point. vortex’, based on the fact that the terms representing these eftects are linear.

The above Hamiltonian dynamical system has several invariants. As noted already,
three invariants are Casimirs; i.e., the total vorticity (vortex volume) of the ith ellipsoid
;. the z—coordinate of the center of the ith ellipsoid Z;, and the vortex-height of the
1th ellipsoid

zhy = \/712 cos? 0; + sin® 6;(a? cos2a; + /32 sin® 4y). (1.64)

Then the degree of freedom of each ellipsoid is reduced to three (six independent vari-
ables). Other conserved quantities are the total energy H, the vorticity center of the
whole system

P - Z/D gixdr = z; I X, (1.65)
Q=Y [ awir =31, (1.66)
. YD i

and the angular momentum

L = Z/D.qi(;r2+y2)d7—

= S TTUXZ P + 224 yR). (1.67)

As in the case of the two-dimensional point vortices, we notice that H, P? + Q* L are
Poisson-commutable invariants. Even a two-ellipsoids system has ‘six degrees of free-
dom’, which exceeds the number of the Poisson-commutable invariants (three). Accord-
ing to the Liouville-Arnol'd theorem, this dynamical system is not. integrable. Miyazaki
et al. (2001) investigated the interaction of two co-rotating spheroidal vortices of the
same shape, by adjusting the initial distance between the vortices. When two vortices
were placed close enough initially, the motion became chaotic, the horizontal distance
D(t) = /(X2 — X1)? + (Y2 — Y1)? between two vortices oscillated irregularly with a large
amplitude, and a ‘merger’ of vortices occurred. By defining the ‘merger’ to be a phe-
nomenon in which the following two conditions were satisfied (i.e., the vertical overlap
(|1Zy — Z1| < zhy + zhs) and the horizontal overlap (D(t) < \/11/3 + V21/3) with Vll/? = \/'21/3
denoting the ‘averageradius’), they determined the threshold of the initial distance lead-
ing to the merger. It was found that the threshold of the merger was almost the same as
that of the chaotic motions.
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Fig. 1.1: Poincare sections for the cases of (a) V12 = 0.1, zhy2 = 1.0, 01(0) = 0, tanf,(0) =
01,012 =10, (b) Vio = 0.5, zh12 = 1.0, 6;(0) = 0, tanf>(0) = 0.1, ['12 = 1.0.

The range of the initial distance X,(0) — X;(0), where chaotic motions (and the
merger) are found, becomes larger as the ellipsoid becomes fatter (larger V). Figures
1.1a and b show the Poincare sections for the cases of Vip = 0.1, (a;(0) = ay(0) =
0.4, 6,(0) = 0.25,8,(0) = 0.247,v(0) = 1.0,7,(0) = 1.005) and Vi, = 0.5, (a1(0) =
a2(0) = 0.8, 3:(0) = 0.625, 32(0) = 0.622,7,(0) = 1.0,7v2(0) = 1.005), respectively. We
can see that the chaos-region expands as the value of V' = a7y increases. This is mainly
because the precession angular velocity decreases as the ellipsoid becomes fatter. Roughly
speaking, chaotic motions are found if the induced vertical shear 7 increases more than
about 30% of the averaged precession angular velocity M

We have constructed an ellipsoidal moment model with the intention to simulate
the vortex interactions in a quasi-geostrophic turbulence. The dynamics of ellipsoidal
vortices is shown to be a Hamiltonian system of finite degrees of freedom, which can
be extracted from the partial differential equations governing the dynamics of quasi-
geostrophic fluid motion by a systematic ‘Hamiltonian moment reduction’ procedure. In
many body interactions, the center of vorticity and the angular momentum, in addition
to the total energy, are conserved. Because the number of Poisson-commutable invariants
are three, chaotic motions are observed even in a two-body system. It is found that the
distance between two ellipsoids, which move around chaotically, oscillates rapidly with
time. If the initial distance is less than a certain critical value, two vortices approach each
other suggesting the occurrence of a ‘merger’. We attempted to derive a simple rule for the
merger (i.e., to determine the critical distance) using the ellipsoidal moment model, and
found that such a simple criterion known to hold for two-dimensional vortex interactions
does not hold for quasi-geostrophic cases. Further investigations are required to construct
a useful rule. If we can do this and, additionally, define the properties of the ellipsoidal
vortex created after the merger, we can perform a ‘quasi-turbulence simulation’.

These results might, however, be of limited value, given that the truncation error in
representing the mutual energy by the moments up to the second order becomes large as
the distance between vortices decreases. The shape of vortices will largely deviate from
the ellipsoidal form, and they may not be approximated by ellipsoids. It is necessary
to check the prediction based on the ellipsoidal moment model very carefully. In the
following sections, we assess the validity of the ellipsoidal model by performing direct
numerical simulations (Miyazaki et al., 2002).



CGER-1057-2004, CGER/NIES

. » s v j
Initialization
l.Initialize the parameters.
2.Set the PV value in each layer.
.:l' J
4 )

Advection

[

.PV contour-to-grid conversion.

N

L.FFT of PV field.

w

.Spectral inversion to obtain the transformed
stream function.

~

.Compute the transformed velocity field from
the transformed stream function.

w

.Inverse FFT to get velocity field.

o

.Bi-linear interpolation to obtain the velocity
field at each node on each contour.

-3

.Advect the nodes by the Runge-Kutta scheme.

v

Surgery

)

[

.Perform surgety.

N

.Redistribute the nodes.

Fig. 1.2: Flow chart of the CASL-algorithm.

1.3 CASL-Algorithm

In order to investigate the effects of the shape deformation from an ellipsoid and the
dissipative processes, which are neglected in the ellipsoidal moment model completely, we
consider typical nonlinear dissipative events in quasi-geostrophic turbulence; i.e., filamen-
tation and break-up of unstable spheroidal vortices and the merger of co- and counter-
rotating vortices. These dynamical events are very important in the understanding of
energy and enstrophy cascades of the quasi-geostrophic turbulence.

The following direct numerical simulations are performed using a CASL-algorithm
developed by Dritschel and Ambaum (1997). The outline of the CASL-algorithm is
illustrated in Fig.1.2. The distribution of the potential vorticity is represented by nested
contour-lines corresponding to gaps of the potential vorticity value (Initialization). The
value of potential vorticity at a grid point is computed by an efficient contour-to-grid
conversion technique. Next, the potential vorticity field is inverted to obtain the stream
function and the velocity field (Inversion). This inversion process is performed in the
spectral space. Then, each contour is advected by the velocity field induced by the
vorticity field (Contour advection by a Runge-Kutta scheme); the velocity at a node on
the contour is computed by a linear interpolation, again. Surgery is performed if the
distance between two contours containing the same potential vorticity becomes less than
the cut-off scale § (Surgery). This operation introduces an artificial viscosity into the

— 15 J—
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numerical computation. Although its relation to the physical viscosity is not clear, we
expect that dissipative effects are, at least approximately, incorporated by the surgery
process. After surgery, nodes on each contour are redistributed in order to represent the
contour accurately (Node redistribution). These steps complete a cycle of the CASL-
computation.

The CASL-algorithm has several advantages compared with conventional algorithins
such as a pseudo-spectral algorithm (McWilliams, 1989 and McWilliams et al, 1994)
and a finite-difference algorithm (Hardenberg and McWilliams, 2000). Pseudo-spectral
algorithms are more accurate and less time-consuming than finite-difference algorithms.
as long as the computed flow field is sufficiently smooth. Pseudo-spectral schenies, how-
ever, suffer from the so-called ‘Gibbs phenomena’ at any jump in potential vorticity. It is
impossible to compare the numerical results with the theoretical predictions wherein all
vortices are assumed to have a uniform potential vorticity anomaly. Since finite-difference
algorithms are, in general, less accurate, it is rather inefficient to capture fine structures
such as filaments emitted from the main vortices. In contrast. the CASL-algorithm can
capture the fine structures, because it follows the Lagrangian movement of contours.
In addition, it uses FFT in the inversion process, which accelerates the computation
considerably in comparison with the original Contour Surgery algorithin.

1.4 Tilted Spheroids

In this section, we study the behavior of perturbed spheroidal vortices (o = 3). A
prolate spheroid, tilted from the vertical (z) axis by O, rotates steadily about the z-axis
with the constant angular velocity

coshzy — 1

Q= % coshZ, sinh?Z, {log ( ) (3cosh?Z) — 1) — 6 ('oshEn} . (1.6%)

cosh=y + 1

This is a function of the aspect ratio a/y = tanhZy, and it is independent of the incli-
nation angle © from the vertical axis. The linear stability of a tilted prolate spheroid
was investigated by Miyazaki et al. (1999). We plot the instability (n = 3 Legendre
mode) growth rate as contour lines in Fig.1.3. Roughly speaking, a prolate spheroid
becomes unstable against the third Legendre mode when a/v < 0.44 and © > 0.48. Two
peaks of growth rate, one at 0.0522 and one at 0.0531, of the third mode are attained at
(a/y = 0.250,0 = 1.275) and (a/y = 0.254.0 = 7 /2). Similarly, a prolate spheroidal
vortex becomes unstable to the fourth mode (n = 4) for a/y < 0.27 and © > 0.55. and to
the fifth mode (n = 5) if a/y < 0.23 and © > 0.58. respectively. The parameter region,
where the instability is observed, becomes narrower as the order of Legendre function
becomes higher. '

Nonlinear development is computed numerically by the CASL-algorithm. where 643
grid points are used in most of the computations. The grid points are increased up to
1287 to check the accuracy. No substantial difference is found between the results using
the usual and finer grid points.
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Fig. 1.3: Instability of a tilted prolate spheroid (n = 3 Legendre mode) and the spheroid
(or spheroids) born after the dissipative processes, i.e., filamentation (solid arrow) and splitting

(dotted arrow).

Table 1.1: Instability of an inclined spheroid.

No. | a/y ©(deg) ~vyeos© o' /v O category
1 10.125 40 1.00  0.260 17.6 filamentation
2 10125 45 1.00  0.317 12.9 filamentation
3 0.125 50 0.75  0.462 128 splitting
0.398  33.3
4 0.125 55 0.75 0.371 34.5 splitting
0.526 27.9
) 0.125 60 0.75 0.535 47.0 splitting
0.630 20.7
6 | 0.125 65 0.75 0.656 46.4 splitting
0.792 38.5
7 1 0.250 40 1.00 0391 26.6 filamentation
8 10.250 45 1.00  0.436 28.5 filamentation
9 |0.250 50 0.75 0.525 28.8 filamentaion
10 1 0.250 55 0.75 0.518 43.3 filamentation
11 | 0.250 60 0.75 0.611 45.9 filamentation
12 | 0.250 65 0.75 0.619 61.3 filamentation
13 | 0.375 50 0.75 0.537 42.1 filamentation
14 | 0.375 55 0.75 0.649 46.6 filamentation
15 | 0.375 60 0.75 0.607 55.4 filamentation
16 | 0.375 65 0.75 0.628 63.0 filamentation
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Fig. 1.4: Weakly unstable spheroid: Filamentaion, a/y = 0.25, ©® = 1.05 (No.11), (a)
t=0,(b)t=16,(c)t =32 (d)t=96.

We can classify the behavior into three categories; steady stable rotation. unstable
filamentation, and splitting (break-up) into two pieces. If a spheroidal vortex is linearly
stable, it rotates rigidly about the vertical axis and the angular velocity observed in the
DNS result coincides with the theoretical value within 3%, which confirms the accuracy
of the numerical computation. These cases are not shown in Fig.1.3 or in Table 1.1, since
they are of little dynamical interest. The circles with a solid arrow in Fig.1.3 show the
initially unstable spheroids that nutate (nod up) to become stable, after emitting thin
filaments from both top and bottom.

Figure 1.4 illustrates the typical time evolution in this category (No.11). This occurs
when the initial spheroid is not so slender or so highly unstable. A solid arrow in Fig.1.3
indicates the ‘stable spheroid’ created after the filamentation. Although the reset-vortex
should be fitted by a general ellipsoid, it is difficult to properly estimate the three principal
axes-lengths and the Euler angles from the computational results. In the following, we
consider that the vortices created after dissipative events are inclined spheroids that
rotate rigidly around the vertical axis. The aspect ratio and the inclination angle of the
spheroid are estimated from the height zh’ = \/ asin® @ + 42 cos?#', the semi-minor
axis o' and the semi-major axis o’+'/zh’ of the elliptical cross section at z = 0 (Table
1.1). Note that the precession angular velocity increases as the aspect ratio increases.

If the initial spheroid is slender and strongly unstable (open circles with two dotted
arrows in Fig.1.3), it splits into two volumes of uniform potential vorticity, which are
identified as two stable spheroids (Table 1.1). Figure 1.5 depicts the typical time evolution
of this category (No.4). The splitting occurs at a relatively early stage of the time
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Fig. 1.5: Strongly unstable spheroid: Splitting, a/7 = 0.125, © = 0.96 (No.4), (a) t = 0,
(b) t - 8 (c) t =20, (d) t = 48.

evolution and the dissipative process is completed rapidly. The dotted arrows in Fig.1.3
show the spheroids created after the splitting. The resulting spheroids are almost of the
same height, whereas the aspect ratios and the inclination angles differ slightly. These
asynunetries become larger as the instability becomes weaker, because the asymmetries
are induced stochastically during the splitting process, which takes longer to be completed
if the instability is weak.

In the filamentation (No.11) and splitting (No.4) processes, considerable amounts of
energy and enstrophy are ‘dissipated” as shown in Figs.1.6 and 1.7, respectively. Here,
the energy is the sum of the kinetic energy (r,y-derivatives) and the potential energy

(z-derivative):
Jfl/:/" Ay (29 (D ey (1.69)
dy 0z

The enstrophy is defined by .

s-///mwwmm; (1.70)

which is proportional to the vortex volume, given that the potential vorticity is uniform
(and constant) inside the vortices and zero outside. The horizontal axis denotes the time
and the vertical axis the relative energy and enstrophy (normalized by their initial val-
ues). The results concerning ‘dissipation” are rather qualitative. for the dissipation by
the surgical operation is not ‘real’. What kind of dissipative processes should be taken in



Vortices, Waves and Turbulence in a Rotating Stratified Fluid

1.05 T
spht .
fiament -
g e S,
(Rt A 3
b o 5
A ‘9%
. bty
o T
s ‘ o oS
o oes M, e .
[ i . e
N e T st s et S e
I A N LR L LR SIS
AR L e AT AR S
+ 1 +
e
0.85 -
0 10 20 30 40 50 60 7

Time

Fig. 1.6: Time evolution of the relative energy: filamentation x (No.11), splitting +
(No.4).

account is a very complicated physical problem. and an open question to be investigated.
Nevertheless, these results are insensitive to the surgical scale 4. so long as it is taken to
be smaller than a tenth of the grid scale, although the energy fluctuates slightly due to
the presence of fine filaments. Note that the energy dissipation is larger for the splitting
process, but that the enstrophy dissipation is larger for the filamentation. In the filamen-
tation, the energy dissipation is smaller than the enstrophy dissipation, indicating the
occurence of an enstrophy cascade that is not associated with the energy cascade. This
is the direct cascade of enstrophy from a large to a small scale. These dissipative pro-
cesses terminate when most of the filaments emitted from the main spheroid are wrapped
tightly by the differential rotation around the main vortex, and they are eliminated by
the surgical operation. It takes longer for the filamentation process to settle down. The
final vortex height (the sum of the heights of two vortices for the splitting cases) becomes
smaller than the initial value, too (Table 1.1). The change in the vortex height is consid-
erably large, because the filaments emitted from both the top and the bottom are finally
dissipated by the surgery.

spit
ftament ¥

SIS0
/

Fig. 1.7: Time evolution of the relative enstrophy: filamentaion x (No.11), splitting 4
(No.4).

In contrast, almost no height change is observed in the break-up cases. This is because

filaments are emitted from the central part, and substantial portions of the potential
vorticity are redistributed into two fragments created after the splitting process. Both
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Fig. 1.8: Correlation of the energy and enstrophy dissipation: unstable prolate
spheroidal vortices.

the energy and the enstrophy are cascaded into smaller scales in the vortex splitting
process. The energy cascade in the usual direction has not been reported in previous
numerical simulations of quasi-geostrophic turbulence, and its absence is linked to the
fact that the break-up occurs only if the vortex is very slender and highly inclined from
the vertical axis. Such vortices are rarely observed in pseudo-spectral computations,
where the majority of vortices are nearly vertical and rotate stably so long as they are
located sufficiently far apart. It is of interest to investigate what occurs when two vortices
come closer together and interact strongly, which is the subject of the next section.

Figure 1.8 depicts the correlation between the energy dissipation and enstrophy dis-
sipation. The horizontal axis is the energy loss and the vertical axis is the enstrophy
(vorticity) loss. If the ‘filamentation’ and the ‘break-up’ are fitted separately, the data
points align on two straight lines showing good correlations, although the points cor-
responding to filamentation scatter slightly. Noting the difference in the gradient of
between the two correlation-lines, we may construct a refined vortex-based turbulence
model, incorporating the dissipative effects of the filamentation and splitting.

Let us comment on the instability of oblate spheroids, briefly. An oblate spheroid,
inclined from the vertical (2) axis by ©, rotates steadily about the z-axis with a constant
angular velocity (':

1 3 . 3
Q' - g cosh®Z) sinh=, {tan‘l < > (= cosh®=) — 1) — 581111156} . (1.71)

=
sinh=( / "2

This is a function of the aspect ratio a /v = cothZ], and it is independent of the inclina-
tion angle © from the vertical axis. The linear stability of a tilted oblate spheroid was
investigated by Miyazaki et al. (1999). We plot the instability (n = 3 Legendre mode)
growth rate as contour lines in Fig.1.9. An oblate spheroid becomes unstable against the
third Legendre mode when a/~ > about 1.62. This instability is caused by a resonance
phenomenon, which occurs even if the inclination angle is very simall for certain aspect
ratios such as 1.617,1.796, 3.259. Similar resonance-induced instability is found for higher
modes. An oblate spheroid becomes unstable against the fourth Legendre mode when
a/y > about 2.13. The parameter region. where the instability is observed. becomes
narrower as the order of the Legendre function becomes higher.

Nonlinear development is computed numerically by the CASL-algorithm. and 1283
grid points are used in most of the computations. An unstable oblate spheroid emits
vortex sheets vigorously and becomes a stable spheroid. The arrows in Fig.1.9 show
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Fig. 1.9: Instability of a tilted oblate spheroid (n = 3 Legendre mode) and the spheroid
born after the dissipative processes (i.e., sheet emission).

what remains after dissipative processes. In many cases the resulting vortex is a stable
oblate spheroid, though even a prolate spheroid sometimes appears.

The correlation between the energy dissipation and the enstrophy dissipation is shown
in Fig.1.10. We could not identify a simple relation between them. because the data points
scatter widely on these plots compared those for prolate spheroids (Fig.1.8).
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Fig. 1.10: Correlation of the energy and enstrophy

spheroidal vortices.

dissipation:

unstable oblate
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1.5 Merger of Co-rotating Vortices

The merger of two co-rotating vortices of like-sign plays a key role in the dynamics of
quasi-geostrophic turbulence. It determines the vortex population and it is linked with
the inverse energy cascade from a small to a large scale. In a vortex-based model of
two-dimensional turbulence (Benzi et al., 1992, Carnevale, 1991), the merging process
is assumed to occur whenever the distance between two co-rotating vortices of radius
Ry and R, is less than o(R, + Ry) (critical distance). Here the threshold value o was
estimated to be about 1.7, based on the Elliptical Moment Model (a two-dimensional
version of the ellipsoidal moment model) (Melander et al. 1986), and subsequent direct
numerical simulations supported this value. The aim of this section is to examine whether
the ellipsoidal moment model can capture the merger of two vortices.

We defined the ‘merger’ in the ellipsoidal moment model by the following two
conditions (Miyazaki et al., 2001). First, two vortices should overlap vertically; i.e..
|Zo— 71| < zhy4 zhg. Second, the horizontal distance between two ellipsoids should be less
than the sum of the ‘average radius’ of the vortices; i.e., (a13171)"3 + (a2B272)'/3 > D(2).
Next, we estimated the critical distance by integrating the model equations numeri-
cally (using LSODE). Figure 1.11 shows the region of the initial position of the second
vortex (a = Xo(0) — X1(0),h = Zy — Z;), relative to the first vortex, for the case of
Vie = 0.1,zhy 5 = 1. The shadowed region represents the ‘defined’” merger region, i.e..
a < (a1fhn)2 + (aofaye) /3. Starting from the region inside the broken curve (model-
threshold), a merger according to the above definition occurs; i.e., the relative position
(X — X1, Zy — 7Z) falls into the shadowed zone over the course of time. We noted pre-
viously that the critical distance for a merger was almost the same as that for chaotic
motions. When the motion became chaotic, the horizontal distance between two vortices
oscillated irregularly with a large amplitude. which circumstance also caused the merger.
Because the initial inclination angles had a minor influence on the critical distance, we
have taken them to be zero (¢ 2(0) = 0).

2

y

0.8 0.9 1

Fig. 1.11: Merger threshold for the cases of V12 = 0.1 and a1 2/712 = 0.32, 612 = 0.

1.5.1 Symmetric merger

We performed numerical simulations (CASL) in order to assess the validity of pre-
dictions based on the ellipsoidal moment model. First. symmetric merger between two
vortices of the same volume, the same potential vorticity, and the same shape is inves-
tigated. The results are classified into three categories: no-merger, merger, and inter-
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Fig. 1.12: Merger of co-rotating vortices:
(b) t =8, (c)t =16, (d) t = 32.

mediate cases. The open squares in Fig.1.11 indicate the cases in which the vortices do
not merge. The open circles denote the cases in which the merger is observed. Figure
1.12 depicts the typical time evolution of a merger (No.2 in Table 1.4). We see that
thin filaments are emitted from both vortices during the merger. The time duration of
the merging process becomes longer near the threshold line. The open triangles indicate
the cases of intermediate and marginal behavior. The vortices merge once, then separate
again into two vortices that are different from the initial vortices. This occurs because the
transiently created vortex is unstable (being slender and highly inclined). The boundary
between the stable and intermediate zones is represented by a solid line. The boundary
between the triangle-zone and the square-zone is shown by another solid line. If the
triangles are taken to belong to non-merger cases, the ellipsoidal vortex model (broken
line) seems to work fairly well for the region h > 0.5 (large vertical off-set). The model,
however, over-estimates the critical distance in the region h < 0.5; i.e., when the vortices
are placed on nearly the same horizontal plane. The reason the ellipsoidal moment model
gives poorer predictions in that region, may be traced back to the ‘definition of merger’
using average radii. The merger-definition can be refined by considering the geometrical
shapes more properly in future work.

The next important step is to assess the properties of a vortex (or vortices) created
after a merger and marginal interaction. Tables 1.3.1.4 show the list of the computed
cases, which belong to the intermediate and merger categories. In contrast. Table 1.2
shows the list of stable cases, in which no dissipative event was observed. The simplest
idea is to replace the merger-product by a single stable spheroid of certain energy, enstro-
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Fig. 1.13: Time-developments of the relative energy and the relative enstrophy
(No.2).

phy. and angular momentum. These values are linked in some way with the properties
of the parent spheroids before the merger. Here, H denotes the total height of the two
vortices; i.e.,

H = zhy + zhy + h, (1.72)

and AH is the change in H after merger. The energy and enstrophy dissipation pro-
cesses during merger depend on the details of filamentation in general. Figure 1.13 shows
the time-developments of the energy and the enstrophy (normalized by their initial val-
ues). corresponding to Fig.1.12 (No.2). We see that the dissipative processes end finally
after merger, and a stable ‘spheroid’ is produced. The behavior of the relative energy
is almost indistinguishable from that of the relative enstrophy. In Table 1.4, the as-
pect ratio and the inclination angle of the merger-product are listed. The aspect ratio
decreases for large h and increases for small h; as is expected. In the latter case, the
filamentation is very vigorous and substantial volumes of the initial spheroids are emit-
ted and dissipated by surgical operations. In contrast to the merger of vortices on the
same horizontal plane. which always produces a comparatively flatter vortex (Hardenberg
and McWilliams, 2000). after a merger of vortices on different vertical levels a slender
vortex may appear. It is of great interest whether the distribution of the aspect ra-
tio statistically approaches the ‘isotropic” state (i.e.. o’/y = about 1), which is one of
classical theoretical predictions in the inertial range (Charney, 1971 ). Although Harden-
berg and McWilliams (2000). who considered mergers of vortices on the same horizontal
plane. claims that slightly flatter vortices (o//y" < 1) dominate the vortex-population,
extensive 3D-studies are needed to verify the classical prediction. Recently, Reinaud et
al. (2003) performed a very large numerical simulation based on the CASL-algorithm.
They showed that the average height-to-width ratio of vortices was about 0.83 (i.e., an
oblate spheroid), although tall vortices (prolate spheroids) are more energetic.

The correlation between the energy dissipation and the enstrophy dissipation is plot-
ted in Fig.1.14. The non-merger cases are not plotted, based on the fact that the energy
and the enstrophy are conserved within 3% if the co-rotating vortices do not merge. The
numbered circles represent the merger-cases. Although the circles scatter widely. they
are almost on a single line. The correlation between the energy dissipation and the en-
strophy dissipation is rather good. which suggests the possibility of a simple workable
law of merging reset. The reason the energy correlates so well with the enstrophy is not
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Table 1.2: Stably rotating symmetric vortex pair.

No.

a

h

_AS/S(%)
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1.20
1.30
1.40
1.50
1.60
1.65
1.58
1.54
1.50
1.45
1.40

h

1.90
1.80
1.70
1.50
1.30
0.90
0.50
0.30
0.13
0.30
0.13
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Table 1.3: Marginal cases.
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-AH/H(%)

10

1.20

1.20

1.30

1.30

1.40

1.40

1.50

1.50

1.5%8

1.54

1.80

1.60

1.70

1.60

1.50

1.15

1.40

1.08

0.90

0.63

0.335
0.362
0.370
0.354
0.342
0.357
0.314
0.354
0.373
0.370
0.339
0.464
0.337
0.381
0.400
0.487
0.345
0.400
0.503
0.460

14.0
4.73
11.4
23.0
17.7
13.0
22.8
6.56
15.1
6.47
3.20
25.4
16.9
7.83
31.9
7.18
19.0
13.4
21.6
16.6

2.07

3.18

1.43

2.31

2.09

9.30

4.39

8.6%8

9.89

19.8

1.05

2.74

1.32

1.59

10.0

5.20

9.31

11.8

21.8

0

2.56

2.78

3.33

3.85
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Table 1.4: Merger of co-rotating symmetric vortex pair.

No.| a h oy © -AS/S(%) -AE/E(%) -AH/H(%)
1 1.20 1.40 0.137 424 6.14 4.12 11.8
2 1120 1.25 0197 351  9.78 8.97 18.8
3 1.20 1.15 0.279 20.3 12.6 12.0 25.0
4 1130 1.25 0153 436  7.90 6.75 12.5
) 1.30 1.15 0.239 32.1 11.0 104 21.9
6 1.30 1.08 0.269 284 13.2 124 23.3
7 1.40 1.08 0.377 &.93 13.4 13.2 33.3
8 1.40 0.90 0.428 7.89 19.2 17.3 32.1
9 | 1.50 0.90 0372 297 159 148 35.7
10 | 1.50 0.75 0.491 208 18.7 15.3 42.9
11 | 1.50 050 0556 46.5  25.3 26.3 50.0
12 | 1.45 0.63 0.474 384 19.8 17.3 46.2
13 [ 140 050 0.660 230  26.4 26.5 45.8
14 [ 140 030 0.758 355 286 28.6 54.2
15 1 1.35 (.30 0830 15.3 31.9 32.5 54.2
16 | 1.30 0.13 0789 338 297 29.0 50.0

clear. It might be a result of the artificial dissipation by surgery, though the behavior of
the relative energy differs from that of the relative enstrophy in the filamentation process
of a weakly unstable spheroid. These dissipative quantities seem to be well correlated
when the dissipative processes occur and end rapidly.

We plot in Fig.1.15 the energy dissipation as a function of cot™!(h/a), which is the
angle from the vertical axis of the initial relative position (a, h). This variable is useful to
represent a point on and around the merger threshold. The points in Fig.1.15 are fitted
approximately by

——— = 0.38cot}(h/a) — 0.22, (1.73)

giving a rule of thumb for the dissipative effects in the symmetric merger Vi, =
0.1,zhy2 = 1. The solid and the broken lines in Fig.1.16, show the aspect ratio o’/+/
of the merger-product as a function of cot™!(h/a). Although the plotted values scatter
slightly. o’/ seems to align on a line

o' /v = 0.91 cot™ (h/a) — 0.50, (1.74)

which provides a rough deterministic estimate of the merger-product.

1.5.2 Asymmetric merger

Next, let us consider asyminetric mergers; i.e., V) = 0.1, Vo = 0.5, zhyo = 1, 61, = 0.
The second vortex with the aspect ratio ag/v, = 0.71 is flatter than the first vortex of the
ay/v1 = 0.32. Figure 1.17 shows a comparison between the prediction of the ellipsoidal
moment model (broken line) and the numerical results of the CASL-computation. When
the vortices merge (open circles) fully, the first (slender) vortex emits filaments from its
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Fig. 1.14: Correlation between the energy dissipation and the enstrophy dissipation:
merger of co-rotating vortices.
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Fig. 1.15: Energy and enstrophy dissipation as functions of cot=!(h/a).

top and bottom and then it is absorbed entirely into the second (flatter) vortex. The
triangles show intermediate cases (partial merger), in which only the filaments emitted
from the top of the slender vortex are captured by the flatter vortex. and the lower part
of the slender vortex remains apart from the flatter vortex (Fig.1.18). This region spreads
widely along the threshold line (broken line) determined by the ellipsoidal moment imodel.
The products after the dissipative interaction are listed in Tables 1.5-1.7. We see that
the first vortex loses almost half of its original volume, whereas the second vortex re-
tains its original shape or expands slightly, absorbing some of the filaments ejected from
the first vortex. This process, which has not yet been reported, is a new dynamical
process linked to the energy and enstrophy cascades. Unfortunately, the prediction of
the ellipsoidal moment model is not so accurate (quantitatively) in these asymmetric
interactions, for the intermediate zone expands widely outside the merger region of the
model. Two solid lines in Fig.1.17 represent. the contours of equi-relative energy dissipa-
tion (—AFE/FEy=0.1(outer), 0.05(inner)). This suggests that ‘two-to-one” mergers might
not be dominant dissipative events in quasi-geostrophic turbulence. but that vorticity-
exchange between two vortices plays a substantial role. During the vorticity-exchange,
the enstrophy is cascaded into a smaller scale, whereas the energy is transferred partly
to a smaller scale and partly to a larger scale. It is important to estimate the con-
tribution of the vorticity-exchange process to the energy and enstrophy transfer in the
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Fig. 1.16: Aspect ratio of the merger-product as a function of cot~!(h/a).

Table 1.5: Stably rotating asymmetric vortex pair.

No. | a h -AS/S(%) -AE/E(%) -AH/H(%)
1 1.60 2.20 0 0 0
2 11.60 200 2.49 2.08 0
3 | 1.80 2.20 0 0 0
4 1.80 2.00 2.80 2.09 0
5 1200 2.20 0 0 0
6 | 200 2.00 0 0 0
7 1200 1.76 3.60 3.07 0
8 1216 1.90 0 0 0
9 216 1.46 4.87 4.26 0
10 | 230 1.76 0 0 0
11 1230 1.00 5.35 4.49 0
12 1240 0.20 0 0 0

quasi-geostrophic turbulence.

The aspect ratios a4/, of the first (initially slender) and second (initially flatter)
vortices after vorticity-exchange are plotted as functions of cot™'(h/a) in Fig.1.19. The
slender vortex becomes considerably flatter, for it loses almost half of its original volume.
It is noted that the aspect ratio does not depend on cot™'(h/a). This is similar to the
splitting of the highly unstable slender spheroid, observed in the previous section. The
second vortex does not change at all for larger cot=!(h/a), in which cases the filaments
emitted from the first vortex dissipated completely. The second vortex becomes slightly
taller for smaller cot=!(h/a) by capturing some filaments emitted from the first vortex at
its bottom. This vorticity-exchange between an asymmetric vortex pair has a profound
effect on the vortex population dynamics. The vorticity-exchange events must be taken
properly into account in order to construct a workable ‘dissipative vortex-based model’
of quasi-geostrophic turbulence. Much more extensive and elaborate studies are required
to this end.

We performed direct numerical simulations (CASL) in order to assess the validity of
the ellipsoidal moment model, which was extracted from the partial differential equations
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Table 1.6: Merger of asymmetric vortex pair.

No. a h o/ O -AS/S(%) -AE/E(%) -AH/H(%)

1 1.60 1.14 0.720 16.1 12.1 10.7 37.5

2 | 1.80 0.93 0.702 17.0 12.5 10.3 28.6

3 | 1.90 0.50 0.696 234 12.5 10.3 16.7

4 | 1.90 0.21 0.789 27.7 12.0 10.4 25.0

5 | 1.80 0.21 0.802 18.7 13.6 11.4 25.0

Table 1.7: Partial merger of asymmetric vortex pair.

No. | a h o [y o’ -AS/S(%) -AE/E(%) -AH/H(%)
1 1.60 1.76 0.809,0.523 12.9,29.4 6.90 6.26 16.7
2 11.60 1.64 0.645,0.563 10.6,18.1 9.32 8.25 I1.1
3 | 1.60 1.56 0.618,0.787 19.6,44.4 9.35 7.73 22.2
4 | 1.60 1.28 0.667,0.576 25.9,47.5 11.5 10.2 18.8
5 | 1.70 1.60 0.634,0.599 13.6,39.1 8.70 7.54 I1.1
6 |1.70 1.56 0.663,0.702 12.3.27.9 9.03 8.27 16.7
7 | 1.70 1.46 0.644,0.471 14.4.25.6 9.75 8.895 22.2
8 | 1.70 1.14 0.707,0.753 19.8,43.9 12.8 12.2 18.8
9 | 1.80 1.50 0.708,0.561 9.12,40.0 9.38 8.16 22.2
10 | 1.80 1.46 0.722,0.539 &.64,46.2 8.49 7.47 22.2
11 | 1.80 1.28 0.676,0.808 23.7,51.8 10.6 9.79 18.8
12 1190 1.46 0.706,0.510 13.2,35.1 7.55 6.67 16.7
13 1190 1.28 0.711,0.590 18.2,39.0 9.66 8.29 12.5
14 1190 1.14 0.711,0.670 18.5,30.9 11.8 9.84 12.5
15 1190 093 0.676,0.471 20.7,53.1 13.4 10.8 7.14
16 | 2.00 1.28 0.720,0.540 11.7,19.1 9.66 8.23 6.25
17 {200 1.14 0.737,0.550 14.5,46.4 10.6 8.85 12.5
18 | 200 0.93 0.719,0.679 10.0,27.6 11.3 9.2%8 0
19 | 2.00 0.50 0.675,0.572 20.947.7 12.8 10.1 0
20 | 2.00 0.21 0.769,0.392 15.1,62.1 12.6 9.95 16.7
21 | 2,10 1.14 0.716,0.619 9.98,21.6 9.35 7.85 6.25
22 | 2,10 0.93 0.720.0.605 16.2,10.2 9.69 .77 0
23 {210 0.50 0.715,0.710 4.13,6.63 11.8 9.5% 0
24 | 2,10 0.21 0.796,0.524 11.3,34.9 9.78 7.92 16.7
25 | 2.16 093 0.700,0.509 16.8,29.7 8.75 6.84 0
26 | 2.16 0.50 0.709,0.568 17.1,25.3 9.97 7.85 0
27 1230 0.21 0.696,0.412 29.9.23.6 8.52 6.42 16.7
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Fig. 1.17: Asymmetric interaction between two co-rotating vortices.

governing the dynamics of quasi-geostrophic fluid motion, by a systematic ‘Hamiltonian
moinent reduction’ procedure. According to the CASL simulation, weakly unstable tilted
spheroidal vortices emit thin filaments, and strongly unstable spheroidal vortices are
hroken up into two pieces. In both cases, considerable amounts of energy and enstrophy
are dissipated. We found that the critical distance of a merger is well estimated by
the ellipsoidal moment model. If we can define the properties of the ellipsoidal vortex
(vortices) created after the filamentation, the break-up, and the merger of co-rotating
vortices, we can perforin a dissipative "quasi-turbulence simulation’. We have proposed

a deterministic rule for the symmetric merger (V; = V, = 0.1), although stochastic
description scems to be required in the asymmetric merger (V; = 0.1,V = 0.5). It

will be of interest to investigate the statistical properties of quasi-geostrophic turbulence,
especially to sce what kind of similarity laws will hold in the quasi-geostrophic turbulence,
where the energy is inversely cascading.

1.6 Counter-rotating Vortex Pair

The remaining phenomenon to be studied in this section is the interaction of a counter-
rotating vortex pair. We investigate the motion of a counter—rotatin'g pair of two vortices
of the same shape, a so-called ‘dipole’(Miyazaki et al., 2003 ). Here a ‘dipole’ means a
counter-rotating pair of ellipsoids with vanishing total vorticity: Iy + 'y = 0. They are
vertically off-set, i.e., they are placed on two horizontal planes of slightly different vertical
height. A stable dipole translates for a long distance and may play an important role
in the ‘long range scalar transport’ that occurs in geophysical flows. There have been
many reports on the motion and stability of a two-dimensional dipole (Flierl, 1987), and
Berestov obtained three-dimensional quasi-geostrophic dipole-solutions (under uniform
stratification) (Brestov, 1979), but we know little about the behavior of a vertically off-
set three-dimensional dipole.

1.6.1 Prediction of the Ellipsoidal Moment Model

We consider the motion of two interacting ellipsoidal vortices of uniform potential
vorticity g1 = —qo, whose centers of vorticity are located at (X2, Y12, Z12). The potential
vorticity is uniform inside both ellipsoids and the principal axes lengths are denoted by
aro. B12,712- Their orientations are specified by the Euler angles ¢;2.012.¢,.. We
have seen that there are three Casimirs linked with the volume V; = a;3;v. Z; and the
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Fig. 1.18: Partial merger of co-rotating vortices (No.22), (a) t =0, (b) t =&, (¢} t = 16,
(d) t = 44.

vortex-height

zh; = \/(a? cos? 1 + 32 sin® ¢;) sin 6; + v2 cos?d;. (1.75)
Then the number of independent variables is reduced to 6; i.e., three degrees of freedom for
each vortex. Actually, we can extract the set of canonical variables X, Y;, R;, 0;, S;. ®; as
shown in Miyazaki et al. (2000). Even a two-ellipsoids system with ‘six degrees of freedom’
is not integrable, because the number of the Poisson-commutable invariants (i.e., ‘three’),
is less than the degrees of freedom of the system. In this section we consider a counter-
rotating vortex pair (I'y + [y = 0). If we assume, further, the symetry X; = —X,,
Y1 = Y, and a1 = ag, 1 = 2, 1 = Y2 (one of them being implied in the relation
Vi = V), and 0, = 0y, ¢1 = —da, ¢y = —1p5 (one of them being implied in the relation
zhy = zhsy), the degree of freedom is reduced to 3 (i.e., equal to that of a single body
problem) and the system becomes integrable; 6 additional constraints are imposed upon
12 independent variables.

We integrate the equations of motion numerically, using the package code ‘LSODE’,
starting from a set of initial conditions. In Case A, we consider very slender spheroids
with aspect ratios ayo/v.2 = 0.1. Both spheroids are vertically standing at the initial
time. The vortex heights are taken to be unity: zh; o = 1. The initial vortices are placed
on the x — z plane and off-set vertically, in general. The interaction of symmetric fatter
spheroids is studied in Case B. The initial aspect ratios of vortices are taken to be 0.3162.
Other parameters are the same as those in Case A. Finally, in Case C, we investigate
symmetric spheroids fatter than those in Case B. The aspect ratios are taken to be 0.7071
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Fig. 1.20: Three patterns found in Case A.

and no singular behavior is observed.

Figure 1.20 shows the results for Case A, where the horizontal axis denotes a =
X5(0) — X,(0) and the vertical axis h = Z(0) — Z,(0). The shadowed region represents
the region where two vortices initially overlap. The behavior is classified into three
categories. If the vortices are far apart initially as in region (1), they translate in the
positive y direction. Figure 1.21 shows the y component of the translation velocity for
the case of a = 0.8, h = 0.4. The average value of the y component is positive in region
(1), although negative values are observed when the vortex inclination is large. The
inclination angle from the vertical axis oscillates periodically (the time period is about
22.5). as shown in Fig.1.22, where §; = 0, is plotted as a function of time. Figure
1.23 depicts the orientation in the horizontal plane ¢; = —¢,. The first ellipsoid rotates
counter-clockwise periodically during a time period of 22.5, and the second vortex rotates
in the clockwise direction during the same time period. When the vortex stands almost
vertically, ¢, changes from 3r/2(—7/2) to 7 /2 very quickly.

When the vortices are located closer initially, two qualitatively different motions are
obsgerved. If the vortices are initially within a critical distance and off-setted vertically,
as in region (2) of Fig.1.20, where h/a is larger than some critical value near 1.4 (whose
meaning will be explained later), the dipole translates in the negative y direction (a =
0.3.h = 0.6: Fig.1.24). The oscillation amplitude of the inclination angle increases
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Fig. 1.21: The y component of the translation velocity of the dipole: (a,h) = (0.8,0.4),
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Fig. 1.24: The y component of the translation velocity of the dipole: (a,h) = (0.3,0.6),
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Fig. 1.25: The inclination angle 6; - 62 (solid line) and the orientation angle
¢1 — —¢o (broken line): (a,h) - (0.3,0.6), region (2).

(a- 0.3,h = 0.6: broken line in Fig.1.25), and the maximum value of #/; = ¢, approaches
7/2 but cannot exceed 7/2 because the vortex heights zh;, are Casimirs and both the
top and the bottom of vortices move on the same horizontal planes where they are placed
initially. The orientation of the first vortex in the horizontal plane rotates clockwise, and
O (- —ds) again changes from 37 /2(—7/2) to w/2 very quickly (see Fig.1.25). Along
the threshold line between regions (1) and (2). therc may be found a series of initial
positions starting from which the vortices do not translate on average and only precess.
In this region. the correction terms in the equations of the vortex centroid translation
exceed the basic terms due to point vortex approximation. We will assess the validity
of the model prediction carefully by performing direct numerical simulations, since the
truncated higher order terms might exert a substantial influence.

The most striking thing occurs when the vertical off-set becomes smaller (region (3)
in Fig.1.20). Both vortices are stretched infinitely. and their inclination angles ¢, » tend
to 7/2 monotonically (a = 0.4,k = 0.2: solid line in Fig.1.26). Simultancously, the ori-
entation angle ¢, = —¢, tends to a certain limiting value (@ = 0.4,h — 0.2: broken line
in Fig.1.26). The vortex pair translates in the negative y direction (Fig.1.27). and the
magnitude of the translation velocity increases exponentially. Because of this singular
behavior. the numerical computation of the ellipsoidal moment model stops in region (3),
which is a serious drawback of the ellipsoidal moment model (and of the Wire-Vortex
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Fig. 1.27: The y component of the translation velocity of the dipole: (a,h) = (0.4, 0.2),
region (3).

model, which was derived in the limit of a very slender ellipsoid) in computing ‘turbulent
interaction’ of many ellipsoidal vortices with both positive and negative potential vor-
ticities. Nevertheless, this singularity is of some interest from the theoretical viewpoint.
Because the ellipsoidal moment model has been derived systematically from the partial
differential equation (i.e., the ‘quasi-geostrophic equation’), which is thought to be a good
approximation for describing geophysical fluid motions, this singularity might be carried
over from the original partial differential equation. We will come back to this issue in
the following subsection, where the results of direct numerical computations (CASL) are
described.

We consider symuetric interaction between fatter (but still slender) vortices
ay2/m.2 = 0.316 in Case B. As in Case A, we find three patterns, depicted in Fig.1.28, as
follows: (1) stable translation in the positive y direction, (2) translation in the negative y
direction with large precessions, and (3) singular behavior (tilting down) of both vortices.

In region (1), as shown in Figs.1.29.1.30 (a = 1.2, A = 0.6), the motion is doubly time-
periodic with a main period of 46.2 and the secondary period of 6.18. The translation
velocity in the region (1) is always positive. The translation velocity for the same values
of (a,h) is faster than that in Case A, because the shortest distance between vortices
decreases as the vortices become fatter, which accelerates the translation. The faster
oscillation of smaller amplitude is superimposed on the main precession. The secondary
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oscillation is associated with a change in aspect ratio ag.2//31.2 in the plane perpendicular
to the longest principal axis (y12). The principal axes lengths a2, S12.71,2 oscillate
rapidly (Fig.1.30), where v, remain the longest principal semi-axes. The inclination
angle 6, = 6, and the orientation angle ¢, == —¢@2 (not shown) behave mainly as they do in
Case A (Figs.1.22 and 1.23), though small secondary faster oscillations are superimposed
on the main oscillation.

In region (2), both the inclination and orientation change slowly and non-periodically,
as illustrated in Fig.1.31 (a = 0.6,k = 0.95). This is because the selected initial data
point is located close to the threshold line (h/a = 1.41) between (2) and (3). Until ¢ =
about 160, the inclination angle increases and so does the longest principal semi-axis v,
whereas the translation velocity decreases. For t > 160, the largest axis v; decreases and
each ellipsoid takes a pancake-like form (not a wire-like form), because a; remains of the
order of unity and only 3, decreases to zero. For t > 275, 6; = 0, exceeds n/2, which
seems quite strange if we imagine only wire-like vortices. This is. however, geometrically
possible for pancake-like vortices, although pancake-like vortices thus inclined might be
unstable (Miyazaki et al.. 2002). A similar tendency is found in Case A (region (2)) in
the area above the straight line h/a = 1.41. The translation velocity increases for ¢ > 160
as the top point returns to the initial position (Fig.1.32).

In region (3). both vortices are stretched infinitely as was observed in Case A
(Fig.1.34). The critical distance considerably increases compared with that of Case A,



Vortices, Waves and Turbulence in a Rotating Stratified Fluid

length

Fig. 1.30: The principal semi-axes lengths o) = o, 51 = o and 71 = v (a,h) =
(1.2,0.6), region (1).
150 """""
% 05} ‘
0 -
0.5
-1 . 1 n
100 150 250
time
Fig. 1.31: The inclination angle ; = f and the orientation angle ¢; = —¢2 for a -
0.6,h = 0.95: (a,h) = (0.6,0.95), region (2).
25 —
20
o 15F
2
10}
5t
0k : ;
0 100 150 250
time
Fig. 1.32: The principal semi-axes lengths a; = ay, 31 = 2 and 71 = 2: (a,h) =

(0.6,0.95), region (2).

12 ¢

08 r

0.6

80




CGER-1057-2004, CGER/NIES

o & A& ® o

12

14 N s N . N
0 50 100 150 200 250
time

Fig. 1.33: The y component of the translation velocity: (a,h) = (0.6,0.95), region (2).

18 +
16 foo
14
1.2

angle
-

08
06 1
04t
0.2t

time

Fig. 1.34: The inclination angle 6; = 62 and the orientation angle ¢1 = —¢2: (a,h) =
(0.8,0.4), region (3).

whereas only a small portion of the region (2) is out of the shadowed zone showing
the initial overlap. Tilting down takes much longer for the fatter pair starting from
(0.8,0.4) than for the slender pair starting from (0.4,0.2) (Case A). The gradient h/a of
the boundary-line between the regions (2) and (3) is again about 1.41. The tilting pair
translates along the y axis in the negative direction, as it does in Case A.

Finally, it is noteworthy that no singular behavior is observed in the symmetric in-
teractions between still fatter vortices, such as Vi, = 0.5 (Case C). If the vortices do
not overlap initially, any dipole translates in the positive y direction with moderate pre-
cessional motion. Then we see that the singularity occurs ‘only for tall vortices’. The
ellipsoidal moment model appears to be able to describe the interactions between fatter
vortices with a/y > about 2/3. In the recent numerical simulations of quasi-geostrophic
turbulence (Reinaud et al.. 2003), it has been shown that the major vortices in the tur-
bulence are identified as ‘oblate spheroids’ whose aspect ratio a/7 is greater than unity.

It will be of interest to investigate, by direct numerical simulations of the full quasi-
geostrophic equations of motion, what occurs in the catastrophic regions for tall vortices.
The above model predictions might be of limited value in these regions, where the trun-
cation error in representing the mutual interaction by the moments up to the second
order becomes larger and the shape of vortex largely deviates from the ellipsoidal form.
It is necessary to check the prediction based on the ellipsoidal moment model carefully.
In particular, the singular behavior of slightly off-setted vortex pairs (h/a < 1.41) might
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Fig. 1.35: Time evolution of the stable dipole: case (1), (a,h) = (1.2,0.6).

be circumvented in the ‘original quasi-geostrophic approximation’.

1.6.2 CASL-Simulations

In order to investigate the effects of the shape deformation of an ellipsoid and the dissi-
pative processes that are neglected in the ellipsoidal moment model, we performed direct
numerical simulations of the quasi-geostrophic equation based on the CASL-algorithm.
The dissipative effects are taken into account by an artificial procedure called ‘surgery’.
A surgical operation is performed whenever the distance between two contours containing
the same potential vorticity becomes less than a surgical scale §. This operation intro-
duces an artificial viscosity into the numerical computation. Although its relation to the
physical viscosity is not clear, we expect that dissipative effects are approximately incor-
porated by the surgery process. The computational results are insensitive to the surgical
scale 4 as long as it is taken to be less than one tenth of the grid scale A, although the
computational time depends severely on 9.

We performed numerical computations corresponding to Case B (vertically standing
symmetric spheroids of aj2/v12 = P12/712 = 0.316), with the resolution A = 27/256
(128° Fourier modes) and the surgical scale § = A/10. A rigid-lid boundary condition of
Neumann-type is applied at the top and bottom boundaries. Three runs, with the initial
conditions (a,h) = (1.2,0.6),(0.6,1.0), and (0.8,0.4), are illustrated in Figs.1.35-1.37,
respectively. These correspond to three qualitatively different cases of Case B, as follows;
(1) stable translation in the positive y-direction: (a, h) = (1.2,0.6); (2) translation in the
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Fig. 1.36: Time evolution of the dipole emitting filaments and satellites: case (2),
(a,h) = (0.6,1.0).
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Fig. 1.37: Time evolution of the dipole emitting filaments (with negligible satellites):
case (3), (a,h) = (0.8,0.4).
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Fig. 1.38: Pattern map of nonlinear development of counter-rotating vortices: Open
circles: stable translation; Crosses: dissipative dancing; Squares: dissipative dancing with
satellites.

negative y direction with large precessions: (a,h) = (0.6,1.0); and (3) tilting down of
both vortices (a singular case): (a,h) = (0.8,0.4).

In case (1), both vortices precess slightly, retaining the ellipsoidal forms, and the
energy and enstrophy are conserved. In cases (2) and (3), the vortices tilt largely in the
early stage of computation. Later, the vortices emit filaments from the top and bottom
and the inclination angles decrease after filamentation (dancing). In case (2), many small
‘satellites’ remain after the vigorous filamentation. Similarly. filaments are emitted in case
(3), but the remaining ‘satellites’ are negligibly small and almost dissipated later. The
singular behavior predicted by the ellipsoidal moment model is not observed; it appears
to be circumvented via the dissipative filamentation. In Fig.1.38, the nonlinear behavior
is summarized as a pattern map in the (a, k) plane. Open circles show the cases of stable
translation without dissipation, and crosses represent the cases of vortex-dancing with
considerable filamentation. Squares represent the cases in which many satellites remain
after filamentation. The solid lines are thresholds predicted by the ellipsoidal moment
model (see the previous subsection). The dotted line shows the region within which
the vortices initially overlap. We can see that practically, the model works well if the
vortices are not off-setted vertically (h < 1), for it captures the dissipative processes
by giving alarms; i.e., by showing infinite stretching or large precession of one or both
of the contour-rotating vortices. When the vortices are largely off-setted (h > 1), non-
ellipsoidal deformation becomes importarnt. even if the ellipsoidal moment model predicts
no singular behavior.

Figure 1.39 plots the time evolution of the translational velocity of the vorticity center.
Here the thin broken line depicts the values computed by the ellipsoidal moment model
and the pluses (thick line) show the results of the CASL-computation. Agreement is fairly
good. The difference in the oscillation amplitude is due to the non-dissipative deviations
of the vortices from ellipsoids observed in the CASL-computations. The small difference
of the oscillation frequency may also be attributed to this. The model prediction is
satisfactory only in the case (1). This is because many filaments are emitted in cases
(2) and (3), and each vortex loses considerable enstrophy. It is of interest to investigate
whether the energy dissipation is correlated to the enstrophy dissipation. It is, however,
difficult to obtain conclusive findings from the present simulations, in which the observed
energy dissipation is rather small (though almost within the limit of 3% computational
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Fig. 1.39: Translation velocity of the stable dipole of case (1): (a,h) = (1.2,0.6). Thin
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accuracy). This tendency is similar to that observed in the filamentation of an unstable
tilted spheroid. Note that the dipoles never translate in the negative direction in the
present. CASL-coniputations.

We have investigated the interaction of two counter-rotating vortices of the same
strength (vortex dipole) based on the ellipsoidal moment model. which was extracted
from the partial differential equations governing the dynamics of quasi-geostrophic fluid
motion. Direct numerical simulations (CASL) have been performed in order to assess the
validity (limitations) of the model’s predictions.

The ellipsoidal moment model indicates that one of or both vortices are stretched
infinitely when they are initially placed within a certain critical distance. This is a
serious drawback of the model; the computation based on the model stops whenever this
phenomenon occurs. We have derived an asymptotic solution of the ellipsoidal moment
model equation in the limit of very slender vortices, which corresponds to the catastrophic
behavior and supports the results of numerical integrations of the model equations.

According to the CASL simulations, a dipole vigorously emits filaments near the
region where the ellipsoidal moment model predicts singular behavior (small off-set). No
really catastrophic behavior has heen observed in the CASL simulations. The dipole
structure remains robust, even if the two counter-rotating vortices are initially almost in
touch. The critical distance of the model does not coincide sharply with the results of the
CASL simulations for largely off-setted cases. After dissipative processes, many ‘satellites’
remain in (and around) the parameter region in which the ellipsoidal model predicts the
occurrence of large precessions. Thus, the ellipsoidal moment model, by giving ‘alarms’
(i.e., the infinite stretching of one of (or both of) the contour-rotating vortices), captures
only the tendency of the occurrence of dissipative events. The model needs refinements
such as those proposed by Dritschel and his group (McKiver and Dritschel, 2003), in which
an ellipsoid is represented by seven point vortices, not by a single point vortex as it is
in the ellipsoidal moment model. According to their model computations, only doubly
periodic motions have been observed in the symmetric case B (private communication).

Enstrophy is dissipated during the filamentation and the satellite-production pro-
cesses. The energy dissipation is so small that it is masked by numerical errors. and
we could not find out any correlation between the energy and enstrophy dissipations. It
should, however, be kept in mind that many satellites result after dipole-filamentation
processes. depending on the properties of the initial dipole, suggesting a new mechanism
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of energy and enstrophy cascades. Due to the complex nature of the phenomena. much
more extensive studies are required in order to establish a workable reset-rule after dipole
interactions.
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Chapter 2
Heat, Mass and Passive Scalar Transfer
in Stratified Rotating Turbulence
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2.1 Unsteady Stably Stratified Turbulence

2.1.1 Introduction

The transport of mass and heat in the atmosphere and ocean depends critically on
how turbulence is affected by the presence of the stable density gradients in these flows.
Recent laboratory experiments and numerical simulations on the unsteady turbulence in
uniformly stratified fluid have shown how these effects are quite complex even without
mean shear. Since the effects of stratification obviously affect the vertical transfer of
both the dynamical scalars such as heat or density, and the passive scalars such as
the concentrations of a pollutant, the most controversial and unresolved problem has
been the qualitative and quantitative explanation of the counter-gradient transport of
dynamical and passive scalars, which means that the heat and mass are transported by
turbulent flux against the stratification. This phenomenon is sometimes observed as a
net time-averaged effect (e.g., Komori, Ueda, Ogino & Mizushina, 1983), though more
often only as a weak transient effect (e.g., Itsweire, Helland & Van Atta, 1986; Lienhard
& Van Atta, 1990; Yoon & Warhaft, 1990). Similar effects have been noted in several
numerical simulations such as that of Gerz & Yamazaki (1993). With little theoretical
justification, this mechanism has hitherto been explained by the nonlinear, oscillatory
turbulent ‘mixing’ of fluid. However, any theoretical explanations of the phenomena
should clarify in what respects the phenomenon is nonlinear, and in what respects it is
linear; a fuller knowledge of the linear effect should be the starting point of the study of
nonlinear phenomena.

In this study we examined linear mechanisms for stratification effects and for the
counter-gradient flux in particular. We applied linear rapid distortion theory (RDT) to
unsheared stratified turbulence and obtained the analytical form of the three-dimensional
spectrum functions, In an attempt to understand the differences in the time-dependent.
spectral behavior of the low (Pr < 1) and high (Pr > 1) Prandtl number flows, we applied
linear rapid distortion theory (RDT) to unsheared stratified turbulence and obtained the
analytical form of the three-dimensional spectrum functions. We show the special char-
acter of turbulence when Pr = 1, which, surprisingly, is in many respects similar to that
of a non-diffusive fluid. We also consider the effects of the initial conditions, particularly
the effect of the initial turbulent kinetic/potential energy, and their spectral form. These
calculations extend those of Hunt, Stretch & Britter (1988) by obtaining the results in
analytical form, from which several new insights emerge. We note that the dependence
on Pr is different in one-dimensional spectra and three-dimensional spectra near Pr = 1.
This difference is important, given that only the one-dimensional spectra are measured
in experiments. We also consider those long-time asymptotics of the covariances that
change with time very slowly or not at all, as explained by Townsend (1976) and Hunt &
Carruthers (1990), these particular asymptotic results of linear theories are often appli-
cable to steady state turbulent flows such as those in atmospheric and oceanic stratified
turbulence. We have compared our theoretical results with those of recent experiments
and direct numerical simulations (hereafter denoted as DNS). The comparison of results
of our theory with those of the experiments and DNS helps to clarify which phenomena
are truly linear and which nonlinear in these flows.
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2.1.2 RDT equations

We consider a homogeneous unsheared turbulent flow placed in a uniform density
gradient (dp/drs) in the xs-direetion. which is anti-parallel to the gravitational acceler-
ation. The governing equations by rapid distortion theory (RDT) (Townsend. 1976) in
the frame of reference moving with the uniform mean flow are

(c(f_]i | 1//4'2) Uy = < ]{23 — ()i3> 0, (2.1)

and
d 2\ - .
— Kk JORRE N Uz, (22)
dt

where N is the Brunt-Viisili frequency given by N2 - —(¢/po)(dp/dry), and the Fourier

coefficients w; (i = 1,2, 3) and p are defined in terms of the velocity and density fluctuation

Uy - Z?}i(kj)()"k’”\ ' (2.3)
k

Lo =N pltye, (2.4)
o .

Here, py is the reference density. ¢ is the acceleration due to gravity. p is the density
perturbation from p(ry), v is the viscosity coefficient. and # is the diffusion coefficient.
When there is no shear. the wavenumber does not change with time | i.e.

dlli'i
dt

(2.5)

and it greatly simplifies the analysis.

In the nondimensionalized form of the governing equations (2.1),(2.2), there are three
nondimensional parameters, i.e.. the Prandtl number Pr — v/~ the Reynolds number of
the turbulence Re = UL/v. and the Froude number Fr = U/NL (e.g., Riley. Metcalfe
& Weissman, 1981). While the Prandtl number is a constant of the fluid, Re and Fr are
defined by the local turbulence parameters. i.e.. the integral length scale L. and the r.m.s.
velocity U. which is determined by the large scale eddies. The relative eflects of viscous
stresses and stable stratification on different sizes (1) of the eddies. whose velocities are
u(l), are characterized by “eddy” Reynolds and Froude numbers defined as Re; -~ w(l)l/v
and Fry = u(l)/NL.

However, for characterising the overall features of laboratory experiments where the
length scale and ran.s. turbulence velocity vary with time (in the moving frame), it
is conventional to usc the ‘mean flow” Froude number F7r - U/NL() and the mean flow
Reyuolds mumber Re ~ ULg/v. where U is the mean velocity and Ly is the grid size often
denoted by M. Given that in most experiments [/ ~ 107207, it follows that Fr > Fr.

2.1.3 Inviscid fluid
Calculation for spectra

We first consider the inviscid fluid. By assuming v~ 0in (2.1)-(2.5). we obtain

w; (1= 1.2.3) and p as
72

N

p - pycosat + ——1uysinat. (2.6)
a
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N N k :l{ } /V2 .
Uy - Uy 4 % {% sinat — —y U (cosat — l)} , (2.7)
. . kzk;; /3() . 2 - .
Ty = gy + 7\ sinat — ;2—?1,30 (cosat — 1) ». (2.8)
. 1 dp a . . ,
Uz = '—]\‘7’2*3{ = Uz COS at — F/)() S (It, (29)
where :
VK24 k2
a == 41/\+ 2 ]\/ R (2 10)

and the subscript 0 denotes the initial values. Then we can calculate all the three-
dimensional spectrum functions. The result, for example, is

—

o
pa(k.t) = E/)*u:j + pus

a - WK . . .
_Wq)p/)(k:'lo) 1 TZ’JCI’:B(I{T,O) sin 2at. S (2.11)

where an overbar denotes the ensemble average.
In this study we assume the initial density fluxes to be zero - i.e.,

G, (k.0) -0 (i~ 1.2.3), (2.12)

— as in the previous numerical simulations. The effects of non-zero @,)i(l}:, 0) =0 (i =
1,2.3) could be assessed by exactly following the method described hereafter.

If, in addition, we assume that the initial velocity and density perturbations are both
isotropic, the initial conditions are given by

. Ek) (. kik .
(I)ij'(,l{',, 0) = W (01']' - ,l{:QJ) N (213)
and Sk
$,,(k,0) = WQNQ. (2.14)
Here -
KE, - / E(k)dk. (2.15)
JO

and ' -

PEy = — /@,)p(E,O)d/? / S(k)dk, (2.16)
2]\/.2 . 0

are the initial turbulent kinetic and the potential energy, respectively.
We now write the wavenumber vector in spherical coordinates as

ky - ksinf cos¢.

ko = ksin#sin¢. (2.17)
ks = kcosd,
so that
K2 = kT kS 4 RS (2.18)
and 1
sint) = w - ATH (2.19)

where &y is the horizontal wave number.
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Variances and covariances

Substituting (2.13) and (2.14) into (2.11), we obtain the vertical flux of density as

piz(t) = | @k t)2rk>dk sin 0d0

*“‘2.\.

E(()C)/ df sin” 6 sin(2N1 sin 6), (2.20)
0

where E((,m == KFE,—2PFEy is the complementary energy. Other variances and covariances
can be calculated similarly; examples are plotted in Figure 2.1 for the two initial condi-
tions PEy/KEy=0 and 1/3. The latter is the case in which the potential energy is equal
to the vertical kinetic energy (cf. Figure 3 of Hunt, Stretch & Britter, 1988). Note here
that, as for inviscid unstratified shear flow (Townsend, 1976), all these functions depend
only on the total initial kinetic turbulence energy and the potential turbulence energy
(KEy and PE;) and not on the precise form of the initial kinetic and potential energy
spectra, £ (k) or S(k), respectively. We also note that, as expected for a linear analy-
sis, the oscillation periods of these functions are completely independent. of the initial
turbulent energy and depend only on the value of N. Accordingly, the zeros of puz(t)
are determined only by an integral that contains Nt. On the other hand, the oscillation
amplitudes are determined by E(()C). The unsteady portions of the covariances all vanish
when Eéc) = 0. This corresponds to the initial equilibrium state of the turbulence. When
PFEqy = 0, the value of E(()C) is KEy, where as when PE, = (1/3)KEj, it is (1/3)KEy,, which
leads to an amplitude that is only 1/3 as large (see figure 2.1(d)).

The long-time (Nt > 1) approximation can be obtained from (2.20), using the method
of steepest descents, as

(S

sin <2N{ . 5) . (2.21)

4

_ N ¢ T
patt) = T (<)

This analytical method shows that the time-dependent portion of (2.20) comes from
near ks = 0 (0 = 7/2); that is, from the infinite vertical wavelength. This suggests that,
when we consider long-term development, we have to consider the effect of the ‘finite’
extention of fluid that we usually encounter in laboratory experiments. Exact comparison
with DNS requires consideration of the periodic boundary conditions. However, the
effects are important only in the unsteady part of (2.20). Insofar as the unsteady portion
decays with time, the steady portion becomes dominant in the long-term, and therefore
the confinement effect is not actually significant.

[t is important to note in (2.21) that. even without viscosity and nonlinearity, the
oscillating portions of the variances and the covariances decay with time in proportion
to t7%. The damping of oscillation is essentially a characteristic of inviscid fluid without
nonhnearity. As time proceeds (Nt > 1), the contributing region of § becomes much
more restricted. to a narrower band near § — 7/2, and the value of the integral decays
with tinte. We also note that the oscillation period asymptotes over a long time to
t = 7 /N, which is the period of buoyancy oscillation.
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2.1.4 Effects of viscosity and diffusion

Spectra

We next consider the same problem with viscosity and diffusion. The solution of
(2.1)-(2.5) gives u; (i = 1,2.3) and p as

p = Ae®' + Bet, (2.22)

ki k A 2 B 2 1
~ vkt | - 1r3 (a1 +vk?)e 1 (etvk?)t _
t=e {uw * k2 {(h + vk? (6 ) ! go + vk? (6 ) ’

(2.23)
2 kok A 2 B 2 |
Y e 2h3 <511+Vk )t 1 ((]2+Vk )t —1
U2 =€ {UQO + k2 {ql + vk? (e ) * qr + vk? (6 ) IR
2.24)
. 1 ; ) 5
iy = o {1+ Kkk®)Ae™ + (g + kk*)Be®'} (2.25)
where
qll{ (v+ K)k* +\/V——n k—4a2} (2.26)
2 b
1 . , i
QQVE{—<U+K/)I{72'—\/(’/—f{:)2k4_4a2}, (2.27)
A= ! {(g2 + Kk?) po — N27f,30} , (2.28)
Q2 — 41
B = {(q1 + kk*)po — N?uisg } . (2.29)
g1 — 42

and a is given by (2.10).
The density-vertical velocity cospectrum then becomes

4 lf——‘TA—
Cpalk,t) = Sptus+ pus
= % [sin2 0{—(v — r)k*(1 — cosat) — a'sin at}<I>pp(E, 0)
s"
+N*H{—(v — K)k*(1 — cosat) + asin az‘}q)g;(k 0)| e~ WHRIRE (2 .30)

where

a = \/4N2 sin? @ — (v — r)2k1. (2.31)
Variances and covariances

From (2.30), the vertical density flux (assuming that the initial turbulence is isotropic)
is given in terms of the initial spectrum as:

pus(t / dke™VTRK /d@sm ¢

(v — rk)k*(1 — cosat) + 25(k)) + asinat (E(k) — 25(k))] . (2.32)

Other covariances can be calculated similarly, and we obtain the normalized vertical
1

_l—..'
density flux by puz/(p? u3’)(¢).
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The one-dimensional spectrum in the x-direction corresponding to (2.30) can be cal-
culated as

e} 2m
@pg(l{fl,f) = / rdr d@q)pg(k,f)
0 0

_ /Oo er —(vtr) (k2 472) / d¢k2+r cos? p
0 4 (k% + T2) 0

x [—(V— k) (k2 +72) (1 - cos at) (E <\/k27+72> 428 (W))
tasinat (E (W) 98 ( K2 ¢ 7"2))} | (2.33)

1
<4N2 (k§ 1 1% cos® o) — (v — w)° (K + TQ)g) |
o = R

with

Ry (2.34)
where (r,¢) denotes cylindrical coordinates, k; is the wavenumber in the z-direction, r
is the radial distance from the x axis, and ¢ is the azimuthal angle measured around the
I axis.

An important character of the three-dimensional spectral function (2.30) is that when
Pr > 1 (sothat v — k > 0), the viscous and diffusive effects act to induce the counter-
gradient flux at high wavenumber k because of the term containing —(v — x)k*. On the
other hand, when Pr < 1 (i.e., v—k < 0), the viscous and diffusive effects act to prevent
the countergradient flux at a high wave number. The covariance puz(t) given by (2.32)
has the same characteristic. This explains why the water tank experiments for Pr > 1
(Pr = 6 (thermal stratification) and for Pr = 600 (salt stratification) (e.g., Itsweire, Hel-
land & Van Atta, 1986; Komori & Nagata, 1996) often show a stronger countergradient
flux than do the wind tunnel experiments (Pr = 0.7 < 1) (e.g., Lienhard & Van Atta,
1990). Using DNS, Gerz & Yamazaki (1993) found in their three-dimensional spectra a
persistent. countergradient flux at high wave number when Pr = 2, but did not observe
it when Pr = 1 (see their Figure 14). When Pr = 1, a becomes simply a = 2N sin § and
(2.32) oscillates like sin(2Ntsin@).

To see the special character of the turbulence when Pr =1 (i.e., v —x = 0), we write
the covariances in this case explicitly; for example,

puz(t) = g/ dk (E(k) — 25 (k)) e~2vk* / df sin® f sin(2Nt sin 6). (2.35)
0

The oscillation periods of the covariances are independent of the initial conditions
E(k) and S(k). They do not even depend on KEy and PEy. They are determined only
by integrals such as

/ df sin® § sin(2Ntsin 0), (2.36)
0

which are identical to those that determine the time development of the inviscid flux
(2.20). Many studies using DNS have focussed on the case of Pr = 1 (e.g.. Riley,
Metcalfe & Weissman, 1981; Métais & Herring, 1989; Gerz & Yamazaki, 1993), but our
analysis shows that this case has rather special properties.
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2.1.5 Comparison with DNS and experiments

Now we compare our theory with the direct numerical simulations and laboratory ex-
periments. In all the examples shown below, for comparison with DNS and experiments,
we use an initial isotropic kinetic turbulent energy spectrum E(k) that satisfies (2.15):

2 2\° , -z _
E(k) = KE, oo Z) ke R, (2.37)
T

with ko being the peak wave number. For the potential energy spectrum S(k) we use the
same form as the kinetic energy spectrum, which is given by

2N\ 2", -
S(k):PEo (9_7T> (E) ke ka, (2‘38)

[SIES

and satisfies (2.16). These spectral forms correspond to the final period of decay of tur-
bulence and have been used in the relevant DNS for flows without shear (Riley, Metcalfe
& Weissman, 1981; Métais & Herring, 1989; Gerz & Yamazaki, 1993).

Figure 2.2a shows the time development of the normalized vertical density flux ob-
tained by Gerz & Yamazaki (1993) for Pr = 1. In this example the initial kinetic energy
is zero (KFEy = 0) and the potential energy spectrum is given by (2.38). They showed
that when the initial potential energy is large (their case B has energy 256 times larger
than that of case C, and case A has energy 16 times larger than that of case C), the flux

decays faster with time and the oscillation period increases for Nt/2x > 1.5. Note here
1 1

) S

that m/(?éu_gi) = —Tus/(T?*u3?), if the perturbation temperature T is used instead
of the perturbation density. Given that Pr = 1 and KFy = 0, the normalized fluxes
obtained by RDT with viscous and diffusive effects agree with the inviscid fluxes. The
RDT results do not depend on the form of S(k). Because the normalized flux depends
only on Nt and not on v or & (i.e., Re or F'r), the difference between Figure 2.2a and 2.2b
comes only from the nonlinear effect. Gerz & Yamazaki (1993) argued that their case C,
which has the smallest turbulence energy, shows very weak nonlinearity due to the fact
that the oscillation period is approximately Nt = . This is verified here by the almost
complete agreement between their case C and the RDT results for Nt/2r < 2.5. In
addition, the amplitude agrees well. Some differences for larger times (i.e., Nt/27 > 2.5)
are likely to arise because DNS cannot resolve the larger scales (k ~ 0), the effects of
which become dominant in a long-time development. We can say that the stronger de-
cay and the increase in the period notable in cases A and B are purely nonlinear effects
caused by the large turbulence energy. Gerz & Yamazaki, quoting personal communica-
tion with H.Wijesekera, argued that the majority of turbulent patches observed in the
ocean correspond to their case C, although noticeable fractions of observed turbulent
patches correspond to their case B. Thus, case C appears to be well representative of the
natural turbulence in geophysical contexts.

Figure 2.3 shows a comparison of the normalized vertical density flux obtained by
RDT with the DNS. In DNS, the turbulent Froude number satisfies Fr < 1 when Nt > 2
(Figure 7 of Métais & Herring, 1989), and the RDT would be applicable for that period.
In RDT we assume the same form for E(k) and S(k) as that in (2.37) and (2.38), then
the normalized flux agrees with the inviscid flux. The form of E(k) is the same in
DNS and RDT. and is given by (2.37). However, in DNS, an unstratified calculation
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Fig. 2.2: Time development of the normalized vertical density flux when Pr =1 and
KFEy = 0. (a)DNS results by Gerz & Yamazaki (1993, Figure 8): ———, case A (PEy = 0.46
in their unit); - - - -, case B (PEy = 7.37); -------~ , case C (PEy = 0.029). (b)RDT. In
DNS., the nonlinear effect would be negligible when Nt/2m > 0.48.
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Fig. 2.3: Time development of the normalized vertical density flux when Pr =1 and
PEy/KEy = 0.05. — — — —) DNS by Métais & Herring(1989, Figure 3); — —, RDT. In
DNS, Fr < 1 is satisfied when Nt > 2.

was performed before stratification was switched on at time t = 0.685 to match the
experimental conditions. This causes a change in the ‘initial’ kinetic energy spectrum
and leads to the uncertainty in the initial condition necessary for the comparison with
RDT results.

However, as the equation (2.35) shows, the zeros of the flux are independent of E(k)
and S(k) when Pr = 1, in which case the differences between the zeros of the flux result
purely from nonlinear effects. We find that the third sa and fourth zeros agree where as
the second and fifth zeros show some differences. On the other hand, Figure 2.2a shows
that even when the turbulence energy is very large, the zeros agree with the RDT at
least for the first five zeros. This suggests that the difference of some zeros is not the
effect of nonlinearity; rather, the effect of some numerical errors in DNS is a plausible
explanation here.

Figure 2.4 shows the time development of the trace components of the anisotropy
tensor defined by

uiuj
bl‘j = —

W (2.39)
uf + ud 4 ud

QO | b

When b; = 0 (i = 1,2,3), the turbulence is isotropic. Figure 2.4a, which is the result
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of case C (small turbulence energy) of Gerz & Yamazaki (1993), agrees quantitatively
with the RDT result given in Figure 2.4b. When Pr = 1 and E(k) = 0, the anisotropy
tensor in RDT agrees with the inviscid result, because the integrals containing S(k) are
cancelled out. The trace components are

b b L — 1 [ df cos® §sin b cos(2Nt sin 6) 1
e 5 Jo d cos? Bsinf cos(2Ntsin ) — L [ dfsin® 6 cos(2Nt sin 6) )
(2.40)
and

b 217 dfsin® 6 cos(2Ntsin 6)
33 iy J—

1
1 — 1 [ dfcos?Osinfcos(2Ntsing) — 3 [ df sin® 6 cos(2Nt sin 0) 3

(2.41)

In the limit of t — 0. we obtain b;; = by, = —7/30, b33 = 7/15, and in the long-time
limit (¢t — oo) we obtain byy = by = —1/6, bgs = 1/3.

These results agree well with the DNS results by Gerz & Yamazaki (1993). A small
difference in the long time could be the result of the weak nonlinearity and the effect of
the periodic boundary conditions used in DNS.

Figure 2.5 shows the comparison of the normalized flux with air low experiments by
Yoon & Warhaft (1990). If we set the ratio PEy/KFEy(= 0.15) so that the initial peak
value of the normalized flux (= 0.68) agrees, subsequent time development agrees well.
[t seems that the excitation of turbulence begins earlier than t = 0 in the experiment.
The agreement is remarkable considering the plausible difference in the inlitial spectral

1
form of E(k) and S(k). Note the weak countergradient flux ([—m/(?u_ﬁi)]mqr ~ 0.2)
in this case (Pr < 1) compared to those in the previous cases (Figure 2.2 and 2.3) where
Pr = 1. The weak countergradient flux for Pr < 1 can be inferred from our expression
of the flux (2.32) as discussed in 2.1.4.

Figure 2.6 shows the corresponding one-dimensional cospectrum —k;©,3(k;). In these
figures, positive —k10,3(k;) indicates that there is a counter-gradient flux.

In spite of the plausible difference in the initial energy spectrum forms E(k) and S(k),
the time development is qualitatively the same for these spectra.

We see that the counter-gradient flux is retarded at high wave number, whereas it
occurs faster at lower wave numbers. These results for low Prandtl number flow (Pr < 1)
can be inferred from (2.33). In this case, there is slow development of the countergradient
flux at much lower wavenumbers. We should note that the one-dimensional cospectrum
(2.33) has a more complicated form than the three-dimensional cospectrum (2.30), so
that this development of the countergradient flux at the lowest wave numbers is not so
easily apparent, although it can be clarified from (2.33).

A further comparison with the air flow experiments by Lienhard & Van Atta (1990)
(their case of N = 2.42s7! and mesh size Ly = 5.08¢m) is shown in Figure 2.7. In
their experiments, countergradient flux is very weak even when it occurs. The validity of
RDT is high when the turbulent Froude number Fr is small. As shown in Figure 18 of
Yoon & Warhaft (1990), Fr is smaller (about 1/2) in the experiment of Yoon & Warhaft
(1990) than in that of Lienhard & Van Atta (1990). Therefore. the nonlinear effect is
comparatively smaller in the experiment of Yoon & Warhaft (1990). This explains why
the results of experiments by Yoon & Warhaft (1990) show better agreement with those
of RDT.
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Fig. 2.4: Time development of the trace components of the anisotropy tensor b;;(i =
1,2,3) when Pr =1 and KEy = 0. (a) DNS by Gerz & Yamazaki (1993, Figure 9(c)). (b)RDT.
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Fig. 2.5: Time development of the normalized vertical density flux when Pr = 0.7.
(a) Wind tunnel experiments by Yoon & Warhaft (1990, Fr < | holds when Nt/27 > 0.15).

A, Fr = 84.8 Re = 4050; o, Fr = 114, Re = 5100; +, Fr = 127, Re = 6070; o, F'r = 192, Re —
6040; &, Fr = 253, Re = 5670. Wind tunnel experiments by Lienhard & Van Atta (1990, Figure
2(b), Fr < 1 holds when Nt/2r > 0.25); B, Fr = 17.1, Re = 7100; B, F'r = 22, Re = 7900. (b)
RDT (Fr = 84.8, Re = 4050, PEy/KEy = 0.15, ko = 30).
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Fig. 2.6: Time development of the one dimensional spectrum —'kl@pg(k:l, t) correspond-
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Warhaft (1990, Figure 15(b), u: distance from the grid, M: mesh length of the grid, Fr < 1
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RDT (PE()/KE() =0.15, ko = 30).
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(a)Wind tunnel experiments by Lienhard & Van Atta (1990, Figure 2(b), F'r < 1 holds when

Nt/2r > 0.25); o, Fr = 17.1, Re = 7100; B, Fr = 22, Re = 7900; v, Fr = 33, Re = 8400; X,
Fr = 42, Re = 8400; +, Fr = 31, Re ~ 3400; », F'r =47, Re = 4400; o, Fr = 62, Re ~ 4200.
(b) RDT (Fr = 17.1, Re = 7100, PEy/KEqy = 0.14, ko = 30).
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Figure 2.8 shows a comparison with the thermally stratified water experiments by
Komori & Nagata (1996). Their experiments are for two-layer flow and not. for a contin-
uously stratified flow, but their one-dimensional cospectrum shows clearly the effect of
the large Prandtl number (Pr > 1).

The comparison with RDT results shows good agreement in that the enhanced coun-
tergradient flux at high wave numbers exists. In the salt-water experiments by Itsweire,
Helland & Van Atta (1986), no countergradient flux was observed at high wavenumber;
Lienhard & Van Atta (1990) speculate that this might have been the result of relatively
poor high wave-number resolution in their experiments.

To understand the decay of turbulence due to viscosity and diffusion, we show in Fig-
ure 2.9 the time development of the turbulence energy in the DNS of Gerz & Yamazaki
(1993) (their case C; i.e., the case with the smallest turbulence energy) and the corre-
sponding results by RDT. In this case Pr = 1. E(k) = 0 and S(k) has the form of (2.38).
Then, in RDT, the turbulent kinetic energy KF(t) and the turbulent potential energy
PE(t) can be easily calculated from the integrals similar to (2.35) by setting E(k) = 0.
Then the total turbulence energy is obtained as TE(t) = KE(t) + PE (t). The results are

l— — —
KE(t) = E(uyf+u.§+u§)
1

= = / dkS(k)e= 2+t
2 0

/" 1 /[
X (1 - 2/ df cos® f'sin 6 cos(2Nt sin §) — -2—/ df sin® 0 cos(2 Nt sin@)) 7
0

0
(2.42)
PE(t) = ——77
(Y F1g
= 1/ dkS(k)e= 2kt (lJrl/ d@sin()cos(ZNtsinH)), (2.43)
2/, 21,
and -~
TE(t)*/ dkS(k)e~ 2%t (2.44)
Q .

We can calculate this integral analytically by substituting (2.38), and find the decaying
ratio as

TE({t) j(')""dks(k.)e—wk?x
TE©O) [ dkS(k)

I _
- (1+uk§1‘.) ' (243)

Using the same Reynolds number Re = 57.4 and the same peak wavenumber in
the initial energy spectrum ky, = (8#)% as in Gerz & Yamazaki (1993). we obtain the
RDT counterpart (Figure 2.9b) of DNS results (Figure 2.9a). The comparison is good
except that there is a slightly faster decay in DNS. Thus, the effective viscosity /diffusion
(in this case v = k) is a little larger in DNS. If the numerical viscosity is negligible
in DNS, the difference comes only from the nonlinearity. This further supports the
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Fig. 2.8: Time development of the one dimensional spectrum — fO3(f.t) (f = kU/27)

near the first vanishing time of i3 (Pr = 6.Re = 2500, Fr = 2.86). (a)Water tank experiments
by Komori & Nagata (1996, Figure 2.9(b), 2:distance from the grid. A/:mesh length of the grid.
Fr < 1 holds where /A > 10) (b) RDT (PEy/KEy = 0.11. kg — 25).
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conjecture that use of lower Prandtl and Reynolds numbers are appropriate to incorporate
nonlinearity effects, When the nonlinearity is not large, its effect would be well described
by these remedies. As we have seen in Figures 2.2 and 2.4, the non-dimensional ratio
of the covariances agree excellently with RDT, even when there are some deviations in
the decay rate of each covariance or the turbulent energies (Figure 2.9). This shows
that the functional forms of the covariances are not affected by the nonlinearity, the
only differences being in the effective value of the viscosity/diffusion coefficient or the
Reynolds/Prandt] numbers.

2.1.6 Conclusions

We investigated the time development of the stratified unsheared turbulence using the
rapid distortion theory (RDT). The results show that the time-dependent oscillations,
including the countergradient phenomena, can largely be explained in terms of phase lags
in linear oscillation rather than in terms of any new kind of nonlinear mixing processes.
Our main results can be summarised as follows.

For inviscid fluid, we obtained the time-dependent covariances in explicit analytical
forms and showed their short and long time limits. These limits clarified that the initial
turbulent kinetic and potential energy determine the final distribution of energy among
the velocity components and density perturbation. The covariances depend only on the
initial total kinetic and potential energy and not on the precise form of the energy spectra.
The oscillation period of the covariances, including the zeros of the vertical density flux,
are completely independent of the initial condition.

For viscous/diffusive fluids, we have given the analytical form of the time-dependent
three-dimensional spectral functions and expressed the corresponding one-dimensional
spectra and covariances by rather simple integrals, which enable us to see the effect of
the Prandtl and the Reynolds number clearly. We found that a high Prandtl number
(Pr > 1) leads to counter-gradient flux occuring at high wave number, whereas a low
Prandtl number (Pr < 1) inhibits the counter-gradient flux at high wave number. These
characteristics explain the differences between water-tank and wind-tunnel experiments.

When Pr = 1. all the wave-number components in the three-dimensional spectrum
function oscillate in phase, as in an inviscid fluid. Then the effects of viscosity and
diffusion are limited to the damping of all the wave-number components in phase. The
oscillation periods of the covariances also agree with those for an inviscid fluid and do
not depend on the initial conditions (excepting the assumption of isotropy).

To estimate certain effects of nonlinearity that might dominate in high Reynolds num-
ber turbulence (c.f. Townsend, 1976), the use of an effective (eddy) viscosity and diffusion
coefficient has been considered. (There are of course other eftfects of nonlinearity, such as
modulating the frequency of the oscillation, that are not described by this approximation.)
This leads the eddy Prandtl number Pr; (see Townsend, 1976, pp. 358) and Reynolds
number to be smaller than the molecular values. Applying these values in the linear
theory leads to a decrease in the strength of the counter-gradient flux, and our results
become closer to the moderate Reynolds number determined in laboratory experiments.
We note that in atmospheric measurements of unsteady stably stratified turbulence at
very high Reynolds number (where Re ~ 10* and Fr ~ 1), such as those described
by Nai-ping, Neff & Kaimal (1983), countergradient fluxes were observed. Significant
countergradient fluxes also occur when density layers emerge in decaying turbulence.
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2.2 Stably and Unstably Stratified Rotating Turbulence

2.2.1 Introduction

Although there have been many studies on turbulence focusing on stratification or
rotation have been conducted, studies on stratified and rotating turbulence have been
relatively few. Recently. Bartello (1995). Métais. Bartello, Garnier, Riley & Lesieur
(1996) utilized wave/vortex decomposition in the analysis of DNS data for stratified
rotating turbulence and investigated the nonlinear energy-transfer mechanisms. Bartello
(1995) also investigated the time development of the kinetic and potential energy for
Pr — 1 in decaying turbulence. More recently, lida & Nagano (1999) and Tsujimura,
lida & Nagano (199%8) investigated the same system by DNS for the case with rapid
rotation.

In this section. we solve the RDT equations as analytically as possible to clarify the
essential mechanisms governing the transport processes in stratified rotating turbulence.
We first obtain the general analytical RDT solutions, then used them to calculate the
variances and covariances such as the vertical density flux and the kinetic/potential en-
ergies for the initially isotropic and axisymmetric turbulence. Next we investigated the
asymptotic behavior of those quantities and compared the results with the DNS and the
experiments in order to clarify the heat/density transport mechanisms in stably stratified
rotating turbulence.

2.2.2 RDT equations

We consider a homogeneous turbulent flow with vertical density stratification (dp/dxs)
and system rotation around the vertical axis. The governing equations in the rotating
frame under Boussinesq approximations are

d 1 ,
U -Vt 20 xu = ——Vp— gis L vV, (2.46)
ot Po Po
dp dp o A ;
37 +(u-V)p+ ug,——du = kVp, (2.47)
and
divu = 0, (2.48)

where u is the velocity fluctuations, €2 = (0,0, ) denotes the angular velocity 2 of the
system rotation, and ¥ is the unit vector in the vertical upward direction.

We linearize the above equations and introduce the spectral decompositions given by
(2.3) and (2.4), then obtain the following set of ordinary differential equations (RDT

equations):
d o B . kzk - :l\’z:l\ . . i
((—]; + Vll{?z) U; + (Oij - A—ZJ> 6]’31f71,1 = (,Z{—; - ()1'3> s (249)
and
d +rk?) p o N (2.50)
m , 3, X
where [ = 20 is the Coriolis parameter (twice the angular velocity Q).
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2.2.3 Inviscid fluid

We first consider the inviscid fluid with v = & = 0. The RDT equations (2.49)-(2.50)
give the general solutions for w;(t) (i = 1,2,3) and p(t).

Then we can calculate all the three-dimensional spectrum functions. If we again
assume (2.12)-namely, the condition that the initial density fluxes are zero- the results
become. for example.

. 1
(k. t) - E/B*'l};; +opid '
k2 4 k2 22 N2
- lk'2a 2 lcosat 4 kt2a,3 (1 —cosat)|sinat®,,(k.0) + %2—(;©33(k.0) sin 2at
+ ey (k"zq’ll(kso) + ki dyo(k,0) — 2k1k2¢’12(k,0)) (1 — cosat)sinat
a3k
fN2k73
JF—(Q‘ZT (ko®13(k,0) — k1 Pas(k,0)) (cosat — cos 2at), (2.51)
12k

where k denotes |k|. the subscript 0 denotes the initial values, and the frequency a is

defined by
N2(K3 + k2) + [2k3)'
oo KT Zk)” ) (2.52)

which shows the exact dispersion relation of the inertial gravity wave.

2.2.4 Initially isotropic turbulence

We consider the initially isotropic turbulence under stable stratification (N? > 0)
whose initial conditions are again given by (2.13)-(2.16).

Integrating (2.51). we obtain the vertical density flux as

i) = /@F,g(kj.,t)ZWk?dksianG

72 ™ 1.3

= %E&C) / de 8123 i sinat(N?sin® 6 cosat + f*cos* ). (2.53)
Jo :

where Eéc) = KFE,—2PE, is the complementary energy. Other variances and covariances

can be calculated similarly.

In the case of pure rotation (N = 0, f # 0). energy distribution does not change with
time and u3(t) = ud(t) = u3(t) = 2KEp holds at all times.

This recovers the DNS results for initially isotropic rotating turbulence that retains
the initial isotropy (Bardina, Ferziger & Rogallo 1985) and the results by linear theory
(Greenspan 1968; Cambon & Jacquin 1989).

On the other hand, in the case of pure stratification (f = 0, N # 0), the above results
reduce to the results described in 2.1.

In the special case of N = f, the dispersion relation for the inertial gravity wave gives
a — N = f. showing that the group velocity of the wave is zero and the wave energy
does 1ot propagate. The integration in (2.53) ¢an be done exactly to give the variances
and the covariances at an arbitrary time. The results become

2

pa(t) = ¢ NE{ (sin Nt + 2sin 2Nt), (2.54)

5
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i a2 2
U%(t) = Uﬁ(f) = EKE() + E)‘E(()C)((‘OS Nf — 1)\ (255)
and
— 2 4
u(t) = SKE, + BEf,c’(cosmw ~1). (2.56)

We note that when N = f, oscillations in the variances and the covariances do not
decay with time, which is in contrast to the case of N # f In this case, a(= N = [)
is independent of # so that all the spectral components oscillate at the same pe-
riod 27 /N(= 2x/f), independent of the direction of the wave number and the three-
dimensional spectra. Then there is an inviscid decay of oscillation, and the energies
never reach constant values.

It is also important to note that w2(= u2) contains only the cos N¢ component and

not sin 2Nt or cos 2Nt, showing that the horizontal kinetic enrgy oscillates slower than
the vertical kinetic energy and the potential energy. As will be discussed later, slow
oscillation with frequency N has been observed in DNS (Figure 2.11) when the initial
turbulence is anisotropic and N = f is satisfied. This is not due to the initial anisotropy
but, rather, to N = f.

2.2.5 Initially axisymmetric turbulence

Because the atmospheric and oceanic flows are often nearly horizontal, it is important
to determine whether different behaviors occur for initially axisymmetric turbulence.
If we assume an initially axisymmetric and purely horizontal turbulence that satisfies
13(0) = 12(0)(= KFy) and u2(0) = 0, and also assume that the Reynolds stresses have
zero helicity (Herring, 1974; Schumann & Patterson, 1978). The energy components can
be calculated as

— — 1 Tosinf o, . , , .
ud(t)y = ud(t) = EKEO/ dﬁ% [(az + f2cos?O(cosat — 1))2 + a® f? cos* sin® at
0 .

N? ™ sin® 6 cos? 6 :
+ TPE()_/ dﬂu [fQ(l — cosat)? + a® sin? aﬂQ , (2.57)
0 a
and
_ ki 3 9 s 2 9 ) T .5 6
ul(t) = fQKEo/ dﬁu sin® at + N2PE0/ dGSHlQ sin? at. (2.5%)
0 a 0 a

In contrast to the initially isotropic turbulence, pure rotation (f # 0, N = 0) modifies
the distributions between the horizontal and vertical kinetic energies.
In the special case of N = f, the exact solutions become

— — 11 4 4

U%(t) = 11§<f) = TE—)[{E() + EPEO + E(KEO — PE()) CcOs ]Vt, (259)
) 2 o ‘
'U.S(t) = ']E(I{EO + 4PEO)(1 — COS ZNf) (260)

We note again that. when NV = f. oscillations in the variances and the covariances do
not decay with time, as discussed in the case of initially isotropic turbulence (2.2.4).
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2.2.6 Unstable stratification

When the stratification is unstable, the most unstable mode grows fastest and will
become dominant. Because of the exponential growth of that mode, the turbulence
energy will become large and the assumption of linearity will break down in a short time.

However. determining which mechanisins work in this transition is still of some inter-
est. The comparison of RDT with DNS and experiments will show that even for unstable
stratification. the agreement is good at least for the initial time developmemt.

When the stratification is unstable (N? < 0), the frequency a becomes purely imagi-
nary for 6y < 6 < w — 6y, where 6, — tan='(—f2/N?)1/2 satisfies 0 < )y < 7/2. For this
region, we then use cosat = cosh(bt), sinat = %sinh(bt), where b = ia. Then, when the
initial turbulence is isotropic. the vertical density (heat) flux becomes

VQ y ) T s 3 0 .
pus(t) = : E[()C) </ + / ) o> sin at(N*sin*f cosat + f2cos®6)
4] J =8

2 al
+ gE[()C) /PGO dﬁsjlfjﬁ sinh bt (N?sin® 0 cosh bt + f* cos® ). (2.61)
J oy
The normalized vertical density flux in the long-time lmit becomes
_p;—ji; (t = oc) = —L (2.62)
prug’

We should note that this long-time limit value is independent of E(%C); L.c., independent
of the initial conditions.

2.2.7 Vertical vorticity
The variance of the vertical vorticity for initially isotropic turbulence can be calculated

as
W2t = /&mmﬂél/ﬁgﬁﬁ
= %J_g/ow df Si;lj 0 [(0.2 — f*cos*H(1 — cos a,t))2 1 a® f% cos? O sin at
+  fiN? /00 dkk*S(k) /7T dﬁﬁ%ge(l — cosat)?, (2.63)
o 0 :
where
G = W+ why + why = 2 [)O K*E(k)dk, (2.64)

denotes twice the initial enstrophy.

2.2.8 Comparison with DNS and experiments

The results will now be compared with DNS and laboratory experiments.

Figure 2.10 shows the time development of the vertical density flux in the stablly
stratified rotating turbulence. The RDT solutions with modification by viscosity and
diffusion (Pr = 1, i.e. v = k) become

1

(1+ 20k20)37?
(2.65)

1 sit

N2

3
176 0 . .

5 sin at(N*sin*Ocosat + f?cos? )
e

1 m
prs(t) ~ 57 [ b
2 JO
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and the long-time asymptotics become

1 I TN\ r I
— (1) = = B (e ) sin (2N T 2
erilt) = b (t|N2 - f2|> o 1) (11 20k2) (2.66)

to—

where the sign + represents 4+ when f > N. and — when f < N.

The overall agreement between RDT and DNS is good. There is a phase difference
between the case of N = 2, f = 0 and all the other cases. When there is no rotation,
N > [ is satisfied and the flux is proportional to sin(2Nt — 7/4), showing the phase
delay. On the other hand. when rapid rotation is imposed. as it is in all the other
cases. N < f is satisfied and the flux is proportional to sin(2Nt + 7/4). showing the
phase advance. This is why in DNS the oscillation period appeared to be longer in the
non-rotating case. The theoretical prediction of zeros by the long-time approximation is
Nt/2m = 0.3125,0.5625, ... when f < N. and Nt/27 = 0.1875,0.4375, ... when f > N.
The time difference in zeros is 1/8 = 0.125. Although the method of the stationary phase
is a long-time approximation and is formally applicable only at large times, it gives a
good approximation even for Nt = O(1).

At later times (0.05 < Nt/2m < 0.2), the rotation effects begin to work, but, as (2.66)
suggests, the amplitude of the oscillation becomes approximately proportional to f~'.
provided that f > N is satisfied as it is in the cases described in Figure 2.10. This is
also observed in Figure 2.10a.b. noting that three values are used for f (=10. 20, and
40). The results for f = 40 show the largest amplitude, and the results for f = 10
show the smallest amplitude. However. the rotation effect, except for its effect on the
amplitude as shown by (2.66), diminishes rapidly with time, and the time oscillation
period (= 2N) is equal to twice the stratification parameter N. The amplitude difference
for different values of f (and N) in a long time is smaller in DNS than in RDT. One
possible explanation is the effect of nonlinearity.

In Figure 2.11, the effects of initial anisotropy (axisymimetric and purely horizontal
turbulence) on stably stratified rotating turbulence are shown for the case of no initial
potential energy (PE, = 0). We should note. however, that the results given here are for
a special case of N = f and the exact RDT solutions become (2.59) and (2.60) with the
viscosity and diffusion effects (Pr = 1),

As is clear in (2.59) and (2.60), the horizontal kinetic energy uf(= u2) oscillates with
frequency N in contrast to the other variances and covariances. This is also clearly
seen in the DNS results. It is important to note that this frequency difference is due

to the resonant condition N = f and not to the initial anisotropy. Even when the
initial turbulence is isotropic, we found the same results as described in 2.2.4. We should
also note that decay of the amplitude occurs with time when N = f is purely the

viscosity /diffusion effect and not due to the inviscid mechanism.

Figure 2.12 shows the time-development of the normalized vertical density flux under
unstable stratification with isotropic initial condition. All the curves for —puz/(p?u3)!/?
asymptote to 1 in a long time. RDT results (Figure 2.12a) show the value calculated by
using (2.60) for 7 and other similar expressions for p2 and u2.

In DNS, there are two lines for the same |N2|'/2/f but for different values of |N?|'/2
and f. These two lines almost coincide. Examination of the RDT solutions for the
normalized vertical density flux shows that the value depends on at, f/a and |[N?|'/2/f.
Since at is determined by ft and |N?|Y2/f except for 6, and f/a is determined by
IN?|Y/2/f, the flux is determined only by |N?{/2/f and ft. Then. for fixed ft. it is
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determined solely by |N?['/2/ f. The agreement of the two curves supports the importance
of the linear mechanisms, showing that there are no other parameters that affect the
normalized vertical density flux.

Figure 2.13 shows the time development of the vertical vorticity variance for initially
isotropic unstably stratified rotating turbulence. The RDT results in Figure 2.13a show
the function given by (2.63) with S(k) = 0 since there is no initial potential energy in
DNS. Combined with the effects of viscosity and diffusion, the RDT results correspond
to DNS (but with Pr = 1) are

— l— [™  sind
2 - 1‘7’3/ d6°
JO
1
X e
(1 + 2vk3t)s/?

" [(a2 — f?cos®H(1 — cos a.t))2 +a®f*cos? Osin? at
a

(2.67)

In the inviscid (v = 0) case, RDT results for the vertical vorticity are again determined
solely by ft and 1N2}% /f. Then for fixed ft, the vertical vorticity variance depends only
on |N2|z/f. Then, in Figure 2.13 where (w2)'/2/(f/2) is plotted, the difference due to f
should appear. Indeed, both in RDT and DNS. the value of (w2)'/2/(f/2) for the same
IN2|2/f but for f twice as large initially shows the half value (¢ = 0). In a long time, the
two lines almost merge into one line, but this is actually an accidental agreement due to
the effect of viscosity and diffusion.

Figure 2.14 shows the time developnient of the kinetic energies for initially isotropic
unstably stratified rotating turbulence with no initial potential energy (PE, = 0). Initial
decay is again due to the viscosity of the fluid. Inviscid RDT gives a monotonic increase
of both the horizontal and vertical kinetic energies. However. the viscosity and diffusion
effects initially appear as the leading order correction to the kinetic energies. Conse-
quently, the effect of viscous damping appears first and then the growth due to unstable
stratification appears later. The initial decay is stronger in the horizontal kinetic energy
u? than in the vertical kinetic energy u3. In their experiments on non-rotating unstably
stratified fluids, Nagata & Komori (2000) (see their figure 2a) found the similar behavior.

2.2.9 Conclusions

In this study, we solved the RDT equations for both stably and unstably stratified
rotating turbulence when the initial turbulence is either isotropic or axisymmetric.

Our results showed good agreement with those of DNS, including the fact that the
rotation modifies the energy distribution between the kinetic energy and the potential
energy. However, the effects of rotation on the ‘unsteady’ aspects of the stratified tur-
bulence are not very large because the Coriolis parameter f is always coupled with cos
or the vertical wave number k3 in the form of fcosf or fks, which vanishes for the
dominantly contributing angle § = 7/2 to the variances and the covariances. The wave
number direction that makes the most contribution (i.e., the horizontal direction (k3 = 0)
or the barotropic mode), is the same as that in the non-rotating stratified turbulence.
Therefore, the stratification effects dominate the unsteady aspects of turbulence even in
the presence of systeni rotation.

In the special case of N = f, the time oscillations of the energies and the fluxes do not
show inviscid decay like ox 17172 observed in the general case of N # f, which includes the
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Fig. 2.13: Time development of (w_g)l/z/(f/Z) for initially isotropic unstably stratified

rotating turbulence. (a) RDT(Pr = 1): —.— . — |[N}|V/2 = 2 f = 40(|]N?|}/2/f = 0.05); —
—— INHVZ =1 f < 20(INHM2/f = 0.05); ——- - [NV = 2, = 20(|N?)/2/f = 0.1);
ffffff N2 = 1, f = TO(N2Y2/f = 0.0); — o [N2V2 = 2, f = W0(INFV2/ f =

0.2); — — —|N?|V/2 = 4, f = 20(|N?|*/?/f = 0.2). (b) DNS by lida & Nagano (1999)(Pr =
0.71): A, [N2|V/2 = 2 f = 40([N?|V/2/f = 0.05); a,|N?V/? =1, f = 20(|N?M/2/f = 0.05);
o, |N?[M2 = 2, f = 20(IN?V2/f = 0.1); & |N2[/2 = 1,f = 10(IN?'/?/f = 0.1); W, |N?*!/2 =
2,f = 10(N?]V2/f = 0.2); W IN?V2 =4, [ = 20(IN?|'/2/f = 0.2).
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Fig. 2.14: Time development of the horizontal and vertical kinetic energy for ini-
tially isotropic unstably stratified rotating and non-rotating turbulence. (|N2|!/2 =

2,f = 20) (&) RDT (Pr = 1): -~ - ;;u,%(: u3) non-rotating; —.—.—u3(= u3) rotat-
ing; ... ,u? non-rotating; —-———u2 rotating. (b) DNS by Iida & Nagano (1999)(Pr =
0.71). Nonlinear, non-rotating: ——————uf; —- - —ud; ... .u2. nonlinear, rotating:

o, u? A,u3; B ul. linear, rotating: o,u?; A, u2; B, u3. The word “linear” means the solution
of tjﬁe linearized Navier-Stokes equations.
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case of pure stratification (f = 0) (c¢f. 2.1). Thus, the energy components never reach
constant values. This is because all the wave-number components oscillate in phase,
irrespective of their directions, so that the contributing components are not restricted
to the horizontal wave-numbers. We note that, in this case, the exchange between the
horizontal kinetic energy and the potential energy occurs at low frequency N, and the
horizontal energies u? and u3 oscillate at that frequency. On the other hand, the energy
exchange at the normal high frequency 2N occurs exclusively between the vertical kinetic
energy and the potential energy.

In the case of pure rotation (f # 0, N = 0), solutions by RDT showed that any
turbulence initially axisymmetric around the vertical axis returns to isotropy by linear
mechanisms. This is in agreement with the previous DNS and the numerical solutions of
RDT equations with viscosity (Cambon & Jacquin 1989).

It is of interest to note that the time development of even the small scale character-
istics of turbulence as represented by vertical vorticity could be explained well by RDT,
although further studies on the energy spectra would be necessary to clarify this point.

The RDT for unstably stratified results explains that the initial decay in the time
development of the kinetic energy components is due to viscosity effects that initially
become dominant; the growth due to unstable stratification appears at later times. This
also agrees with the results of previous DNS and the experiments. It may be concluded
that. the linear processes described by RDT are dominant at least for a relatively short
time before the exponential growth of turbulence due to instability, and the subsequent
nonlinear saturation of the growth becomes dominant for |[N?|Y/2¢t > O(1).
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2.3 Passive Scalar Diffusion in Stratified Turbulence

2.3.1 Introduction

Passive scalar diffusion in stratified turbulence is generally relevant to pollution prob-
lems, though few fundamental studies concentrateing on the difference between passive
and active (i.e. heat or density) scalars have been conducted. It is true that if the initial
conditions and the molecular diffusion coefficients are the same in the passive and active
scalars, the solution is the same and the turbulent diffusion coefficients should also be the
same. Our question then beconies, “Under which conditions do they become different?”.

In one previous study, for exmple, Warhaft (1976) calculated the vertical fluxes of
passive and active scalars using the turbulence model proposed by Launder (1975) on the
pressure-strain term, and showed the possibility that the turbulent diffusion coefficient
for the passive and active scalars becomes different particularly if the cross-correlation
coefficient between the active and passive scalars is small. However, most of the dis-
cussions in the literature are based on the energy-flux budget equations for stationary
turbulence; the effects of unsteadiness or the initial conditions of turbulence have not
been considered.

One of the first fundamental numerical simulations for the passive scalar diffusion
in stratified turbulence (but with mean shear) was performed by Kaltenbach, Gerz and
Schumann (1994). They investigated the time development of the cross-correlation co-
efficients between the passive scalar ¢, active scalar p. and the vertical velocity us (i.e..
Rep, Res and Ry3) and found that R, reaches a rather large value (> 0.8) in a long time
even when there is no initial correlation between ¢ and p (R.,(t = 0) = 0).

The first laboratory experiments that investigated the effects of initial conditions
were performed by Nagata and Komori (2001). In their experiments, the passive scalar
was released from a nozzle so that there was no initial correlation between the passive
and active scalar (R.,(t = 0) = 0). Time development of R, showed that it reaches a
small value (~ 0.25), which might be due to the low initial correlation. Indeed, in their
previous experiments (Komori & Nagata, 1996). the difference between Ry and R,3 was
small when p and ¢ had a much larger initial correlation, leading to the counter-gradient
passive scalar flux under strongly stratified conditions.

In this study, we solve the problem of passive scalar diffusion in stably stratified
turbulence for the first time as an “initial value problem”, which takes into account all
the initial conditions in order to clarify what determines the subsequent time development
of the various fluxes. We here use the rapid distortion theory (RDT), which has been
found to give accurate solutions for strongly stratified turbulence. The theory is based
on the linearized governing equations, and therefore, as noted previously, has limited
applicability conditions. However, it is the only theory that can take into consideration
the effects of the initial conditions. The results will be useful to determine the suitable
initial conditions for future numerical and experimental studies.

2.3.2 RDT equations

We consider an inviscid fluid with uniform vertical density stratification (dp/dry =
const.) and with uniform vertical passive scalar gradient (de/drs = const.). The govern-
ing equations for this system are the same as (2.46)-(2.48) (except that @ = 0), with an
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additional passive scalar equation given by

dc ; dc

— 4+ (u-V)ct+ uz— = 0, 2.68
ot (s Vet g -0, (2:68)
where ¢(r3) is the undisturbed passive scalar distribution and ¢ is the passive scalar
perturbation from ¢(x3). We substitute the spectral decompositions

cla 1) = Y ek, )e e, (2.69)

R

into (2.68) and obtain an additional equation for the spectral component ¢.
If we neglect the nonlinear terms in the governing equations, we can obtain the RDT
(Rapid Distortion Theory) equations (2.1)-(2.2) and also

dc

— = —7YlUa, 2.70
i yus ( )

where v = dé/dr; is the mean passive scalar gradient, which is a constant independent

of x3.

2.3.3 Solutions of RDT equations

Solutions of the RDT equations (2.1), (2.2), and (2.70) give (2.6)-(2.9) and

ek, t) = o+ l,[}n(l — cosat) — 21}.30 sin at. (2.71)
N? a

where a is the angular frequency of the internal gravity wave defined by (2.10).

We note here that ¢(t) has a steady term é& + (v/N?)po, which does not exist in p(t).
As will be shown later, this will lead to a slowly oscillating term with frequency N in
Zus, which does not appear in ptiz where only rapidly oscillating components (frequency
2N) exist. The steady component is determined by é, po and y/N? meaning that the
initial conditions as well as the mean active and passive scalar gradient are important.

2.3.4 Fluxes

We assume that the initial fluxes of density and passive scalar are zero, as is the case
in the usual experiments for grid turbulence and in the previous DNS, so that

1A—A—-—A"7— . . . ‘
®pi(k,t = 0) = EPEUM + pouly =0 (i = 1,2,3), (2.72)
1——_—‘—— . -
Des(,t = 0) = 5o + oty = 0 (1 = 1,2,3), (2.73)

where the overline denotes the ensemble average.
If we also assume that the initial fluctuations are isotropic, the initial conditions are

given by (2.13), (2.14) and

Q(k)

Pec(k.0) = . (2.74)
_ R(k) ‘
Doy (k.0) = 5 (2.75)
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When integrated, these spectra give

c2(0) = [ocg(k)dk, (2.76)
Z5(0) — / " R(k)dk. (2.77)

Then integrating in the whole spectral space, we can calculate the variances and the
covariances as

) = / O, (k. t)2mk*dk sin 60

—F0) + ZLa0) + r (KEo + 6PEy)
= (0) ;\TQ‘CP) IN? 0 0

(ep(0) + 27PE0)/ df sin 6 cos(Ntsin 6)
0

2

N2

ro

_ gﬂﬁ(KEU_ZPEO)/ df sin 0 cos(2Nt sin 6), (2.78)
0

1 ™
_%(KEO + 2PEy) + Z(EE(O) + ZVPEO)/ df sin 0 cos( Nt sin 6)
0

N

(KEy — 2PEO)/ df sin b cos(2Ntsin h), (2.79)
0

1 7 .
cusz(t) = —ﬁ(Eﬁ(O)JrZyPEO)/ df sin® § sin(Ntsin 6)
0

— Z’;V(KEO—ZPEO)/ df sin® 0 sin(2/Ntsin 6). (2.80)
0

In the notation of this paper, the turbulent diffusion coefficients for the active (density)
and passive scalar fluxes are given by

(1) ‘
Koty = T2, (2.81)
and t
cuz cuz(t
K.(t) = —C“jz( ) _ —Cui( ), (2.82)
des v
Then
K,(t) = Kc(1), (2.83)
is equivalent to the condition
cus(t) ¥
Lo 2.84
O E (2849
As is clear in comparison of (2.80) with (2.20). this is equivalent to
2p(0) + 2vPEy — 0, (2.85)
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in the initial condition. Therefore, we can conclude that for the difference between K,
and K., initial density fluctuation (PEy # 0) is necessary, given that if Pky = 0, it means
$,, = 0 at all wave numbers (i.e., p = 0), so that ¢p(0) = 0 .

We should also note that if v¢p(0) > 0 (i.e., if v and €p(0) are of the same sign), the
difference between ¢z and puz becomes larger as |¢p(0) + 2vPE,| becomes larger. On
the other hand, if vep(0) < 0 (i.e., if v and ¢p(0) are of opposite sign), there exists a
possibility of €p(0) + 2vPEy = 0 (and hence K, = K.) even if PE, > 0. Then, the sign
of vertical mean gradient v is important for the difference between K, and K..

Above results suggest that, in the usual grid-generated turbulence where PEy ~ 0
and the initial correlation 3(0) ~ 0 are both small, cuz ~ (y/N?)puz (i.e., K, ~ K.)
holds.

This conclusion is apparently contrary to previous arguments (Warhaft 1976;
Kaltenbach et al. 1994) that “When @p(0) = 0, there will be a large difference between
@iz and puz in the subsequent time development”. However, in previous studies the
discussions have been made based on the energy-flux budget equations for “stationary”
turbulence, and no considerations was given to the unsteadiness or the initial conditions.
On the other hiand, we have considered here the effects of the initial conditions explic-
itly, and have solved the initial-value problem. Differences in the results show that the
identification of steadiness or unsteadiness of turbulence is important in modeling the
turbulent fluxes.

As is clear in (2.80), the effects of PE, and ¢p(0) appear as slowly oscillating compo-
nents with frequency N, and they are superimposed on the rapidly oscillating components
with frequency 2N, which exist independent of the value of €p(0) + 2vPEy. The slowly
oscillating components also appear in ¢ (cf. (2.78)) and @p (c¢f. (2.79)), both of which
are related to the passive scalar c.

Kaltenbach et al. (1994) performed a DNS under initial conditions of Zp(0) = 0 (and
PEy = 0) with the expectation that initial statistical independence between the passive
and active scalars would lead to a subsequent large difference in their turbulent diffusion
(see their Fig. 21). The short-time approximations for the correlation coefficients under
these conditions can be calculated using (2.78)-(2.80), etc. For example, the correlation

.. . . . 512512
coefficient between the passive and active scalars, i.e., R., = ¢p/(c?" p* ") becomes

272KE0 >1/2
Nt = - (STE) () (2.86)
and Re = "C_YE/(gl/ngl/z) becomes
22 KE,

1/2
RaNt<«l)= - | —— Nt) + .., 2.87
JNE< 1) (BN?CQ(O)) (N (287)
which agrees with R.,(Nt < 1). Corresponding to this result (Re, ~ He), Rps =
___—l/2=51/2
puz/(p? " "ui ) becomes
Rua(Nt< 1) =1+ ... (2.88)

To confirm these results and also to see the longer time development, we show in
Figure 2.15 the time development of R.,, R.; and R,3; obtained using (2.78)-(2.80) and
(2.20), which are valid at arbitrary times. Here we have used the same initial conditions
as used by Kaltenbach et al. (1994); i.e.. PEy = ¢p(0) = 0 and N2c2(0)/(v*KEy) = 3.67.
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If PEy = p(0) = 0, all the time developments are determined by N2c2(0)/(v2KFE,) in
RDT. For example, R.3 at an arbitrary time is given by

— 1 sign T df sin? 6sin(2Nt sin ¢
R.a(t) = astgn(y) J, dfsin ( )

1/2

Y2 KE

(NQC_Q(O) +1— 1y dfsin6cos(2Nt sin 6)) (3 + 7 Jo dfsin®6cos(2Nt 51110))1/2

(2.89)

Correlation coefficients

2 4 6 8
Nt
Fig. 2.15: Time development of the correlation coefficients obtained by RDT for
PE, = tp(0) = 0 and N2¢2(0)/(v?KEy) = 3.67. —— —— —, Rpg; = — - = Repj--------- ;
R.3.

We should be reminded that due to the mean shear (Ri — 0.5) addressed in DNS by
Kaltenbach et al., long-time development will not agree with the RDT results obtained
for Ri = o0 (no shear). For example, it has been known that the existence of mean shear
leads to different R,3 in a long time (Holt et al. 1992). However, we can expect good
agreement for the short-time (Nt < 1) development. Indeed, in agreement with Figure
2.15, the DNS by Kaltenbach et al. shows (see their Fig. 21a) that —Re(= Re,) = Res
and —Re3(= R,3) ~ 1 (6: temperature fluctuation) for Nt < 1. In addition. R, and R
grow in proportion to the non-dimensional time Nt, and the proportionality coefficient
is (292 KFEy /3N%c2(0))'/? = 0.43, again in agreement with the RDT predictions.
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2.3.5 Conclusions

The effects of initial conditions on the passive and active scalar fluxes in unsteady
stratified turbulence have been analyzed using the rapid distortion theory (RDT). So-
lutions of the RDT equations for the initially isotropic turbulence show that if PE, =
¢p(0) = 0 (more generally, if ¢p(0) + 2vPEy, = 0), the turbulent diffusion coefficients
satisfy K,(t) = K (t) at all times. If, in addition, c2(0) is small (N2c2(0)/(v*KE,) < 1),
correlation between active and passive scalars becomes large; i.e., |Rc,| ~ 1(Nt > 1).
This means that the previous argument based on the ‘stationality’ of turbulence, that
the correlation coefficient R., becomes generally small if 5(0) = 0 initially, is not correct
in unsteady turbulence. Corresponding to this large correlation, counter-gradient passive
scalar flux occurs when there is a counter-gradient active scalar flux.

In contrast, if c2(0) is large (N2c2(0)/(v*KEy) > 1), the final correlation becomes
small; ie., |R,] <« I(Nt > 1). Given that K, = K. holds under the conditions of
PE, = tp(0) = 0, this means that K, = K. does not necessarily correspond to |R.,| = 1.
Therefore, it is not correct to use |R,,| == 1 as a general criterion for K, = K.. The above
results show that the initial conditions and the unsteadiness are important to estimate
the turbulent diffusion coefficient in ‘unsteady’ turbulence.

The results of this study clearly show the possible importance of the initial conditions
on the unsteady turbulence, which data will be useful for the parameter determinations
in future DNS, experiments, and modeling of the turbulent diffusion.

Earth’s rotation and the vertical density stratification of fluids determine the most im-
portant /dynamical aspects of geophysical flows. Since the governing equations of those
fluids have been well known, they are now solved numerically in the atmospheric and
oceanic models quite routinely. However, we can not resolve all the length/time scales
at the same time since there is a huge difference in the largest and smallest scales in
geophysical flows. This scale difference requires unrealizable vast computer resources,
and leads inevitably to the “modelling” of flows/turbulence. But the modelling should
depend on the scales, and it implies many uncertainties. Since the flows of rotating strat-
ified fluid consist of vortices and waves, fuller knowledge of them and their interactions,
as investigated in this study, would be of great help in constructing the numerical mod-
els used for the environmental problems, including the climate prediction. Finally, the
authors are grateful to Dr. Naoya Takahashi of University of Electro-Communications
for his help in preparing a beautiful TEX-stylefile. Without his tremendous efforts this
monograph would never have been completed.
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