CGER-I163-2023_計算で挑む環境研究
95/140

※1 モデル間相互比較の考え方については、このシリーズの第3回(P.17~P.24)に詳しい。 春になって極域に太陽光が当たるようになると、冬の間に極渦の中に蓄積された活性な物質による光化学反応が起こって極渦内のオゾン破壊反応が進み、オゾンホールの発生につながります。 このようなオゾン層のシミュレーションを行うには、ここまでの解説でご想像のようにオゾンなどの大気微量成分の反応や輸送を扱う必要があり、大気の運動や放射などを扱う従来の数値気候モデルでは不十分でした。オゾンホールの問題を受けて、こうした大気微量成分の化学反応や輸送計算が加わった化学気候モデル(chemistry climate model: CCM)の開発が各国で進みました。我が国では、気象庁気象研究所や国立環境研究所などのグループがCCMの開発を行っており、オゾン層の変動要因の解明や将来のオゾン層予測を行うための国際的なCCM相互比較プロジェクトの取り組みも行われてきました※1。 ここで北極域に目を向けてみます。北極域では成層圏の平均気温が南極域より高く、PSCが発生するほど低温となる期間は南極域より短いため、北極域では大規模オゾン破壊は通常起きません。しかし、北半球では南半球よりも大気中の大規模な波(東西方向に1万km以上のスケールをもった惑星波)の活動が活発で、冬季に対流圏から成層圏に伝播してきて極渦を不安定にすることがよくあります。 この波活動は、2年に一度くらいの割合で冬に活発化して、極域成層圏の気温が数日の間に数10度も上がる突然昇温現象を引き起こすことがあり、それによって極渦が壊れ、極域が低気圧ではなく高気圧になってしまいます。こうした波活動は年によって大きく異なり、活発な年には突然昇温が複数回起こり、不活発な年には極域成層圏でPSCが発生するほどの低温が継続するといったように、活発な年と不活発な年で冬季を通じた極渦の時間変化が大きく異なります。02春先の北極オゾン大規模破壊は事前に予測できるのか?

元のページ  ../index.html#95

このブックを見る